MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Dartmouth-led team devises new technique to probe 'noise' in quantum computing

Dartmouth College Professor Lorenza Viola and her collaborators have devised a new way to "sense" and control external noise in quantum computing.
CREDIT: Dartmouth College
Dartmouth College Professor Lorenza Viola and her collaborators have devised a new way to "sense" and control external noise in quantum computing.

CREDIT: Dartmouth College

Abstract:
Dartmouth College and Griffith University researchers have devised a new way to "sense" and control external noise in quantum computing.

Dartmouth-led team devises new technique to probe 'noise' in quantum computing

Hanover, NH | Posted on April 19th, 2016

Quantum computing may revolutionize information processing by providing a means to solve problems too complex for traditional computers, with applications in code breaking, materials science and physics, but figuring out how to engineer such a machine remains elusive.

The findings appear in the journal Physical Review Letters. A PDF is available on request.

"Quantum noise spectroscopy" is an emerging field within quantum physics that seeks to characterize and control the noise affecting quantum systems. Quantum systems, which include tiny objects such as atoms, electrons and photons, display counterintuitive properties, such as the ability to be in a superposition of two different states simultaneously. These quantum properties are essential for quantum computing, but they are easily lost through decoherence, when quantum systems are subject to "noise" in an external environment. Because a quantum system is always embedded in a larger environment, some noise is unavoidable. A quantitative understanding of environmental noise is, therefore, crucial to accurately model the behavior of quantum systems and determine whether they can perform in applications such as quantum computing.

Quantum noise spectroscopy offers an elegant solution to this challenge by using a quantum system as a "probe" of its own environment. Typically, an experimenter may control the state of a quantum system through the application of external fields, such as optical or magnetic fields. In a quantum noise spectroscopy protocol, the quantum system is subjected to a "control sequence" -- that is, a suitably designed application of these fields. The quantum system evolves dynamically due to both the control sequence and the unavoidable interactions with the environment. Careful selection of control sequences combined with measurement of the quantum system enables the researchers to extract information about the environmental noise.

"Prior to our work, quantum noise spectroscopy had two major shortcomings: it was restricted to environmental noise that was (1) classical and (2) Gaussian," says co-author Lorenza Viola, a professor of physics at Dartmouth. "The assumption of Gaussianity implies that the noise has very special properties -- it can be fully describes solely in terms of "two-point correlation functions" -- while the assumption of classicality precludes the possibility that the environment is itself in a quantum-mechanical regime. These assumptions break down in many realistic situations of interest, which prohibits accurate and general characterization of environmental noise. For example, superconducting qubits, one of the most promising systems for scalable quantum computing, are subject to noise with observable deviations from Gaussianity."

In their new work, the Dartmouth-Griffith researchers designed a new family of control sequences and show how they can extract information about the higher-dimensional (beyond two-point) correlation functions of the noise. Knowledge of these correlation functions offers a complete characterization of the noise, enabling accurate modeling of the interaction between a quantum system and its environment. The researchers demonstrate noise spectroscopy protocols that apply to both classical, non-Gaussian and a class of paradigmatic quantum, non-Gaussian environments. To the researchers' knowledge, the study of higher dimensional correlation functions for quantum noise sources is an entirely new research area.

"Quantum technologies have the potential to revolutionize computing and communication," Viola says. "One of the primary obstacles towards realizing these technologies in the lab, however, is the decoherence of quantum systems through interactions with the environment. Quantum noise spectroscopy characterizes environmental noise, enabling detailed dynamical modeling and offering physical insight into the process of decoherence. This information can be used to devise strategies to optimize the protection of quantum systems from environmental noise. Previous work did not apply to quantum or non-Gaussian noise sources, excluding a large class of quantum systems. Our work overcomes these limitations."

###

####

For more information, please click here

Contacts:
John Cramer
john.cramer@dartmouth.edu
603-646-9130

Lorenza Viola
lorenza.viola@dartmouth.edu

Copyright © Dartmouth College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Quantum Physics

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Physics

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Quantum Computing

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project