MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Zip software can detect the quantum-classical boundary: Compression of experimental data reveals the presence of quantum correlations

Abstract:
Quantum physics has a reputation for being mysterious and mathematically challenging. That makes it all the more surprising that a new technique to detect quantum behaviour relies on a familiar tool: a "zip" program you might have installed on your computer.

Zip software can detect the quantum-classical boundary: Compression of experimental data reveals the presence of quantum correlations

Singapore | Posted on April 21st, 2016

"We found a new way to see a difference between the quantum universe and a classical one, using nothing more complex than a compression program," says Dagomir Kaszlikowski, a Principal Investigator at the Centre for Quantum Technologies (CQT) at the National University of Singapore.

Kaszlikowski worked with other researchers from CQT and collaborators at the Jagiellonian University and Adam Mickiewicz University in Poland to show that compression software, applied to experimental data, can reveal when a system crosses the boundary of our classical picture of the Universe into the quantum realm. The work is published in the March issue of New Journal of Physics.

In particular, the technique detects evidence of quantum entanglement between two particles. Entangled particles coordinate their behaviour in ways that cannot be explained by signals sent between them or properties decided in advance. This phenomenon has shown up in many experiments already, but the new approach does without an assumption that is usually made in the measurements.

"It may sound trivial to weaken an assumption, but this one is at the core of how we think about quantum physics," says co-author Christian Kurtsiefer at CQT. The relaxed assumption is that particles measured in an experiment are independent and identically distributed - or i.i.d.

Experiments are typically performed on pairs of entangled particles, such as pairs of photons. Measure one of the light particles and you get results that seems random. The photon may have a 50:50 chance of having a polarization that points up or down, for example. The entanglement shows up when you measure the other photon of the pair: you'll get a matching result.

A mathematical relation known as Bell's theorem shows that quantum physics allows matching results with greater probability than is possible with classical physics. This is what previous experiments have tested. But the theorem is derived for just one pair of particles, whereas scientists must work out the probabilities statistically, by measuring many pairs. The situations are equivalent only as long as each particle-pair is identical and independent of every other one - the i.i.d. assumption.

With the new technique, the measurements are carried out the same way but the results are analyzed differently. Instead of converting the results into probabilities, the raw data (in the forms of lists of 1s and 0s) is used directly as input into compression software.

Compression algorithms work by identifying patterns in the data and encoding them in a more efficient way. When applied to data from the experiment, they effectively detect the correlations resulting from quantum entanglement.

In the theoretical part of the work, Kaszlikowski and his collaborators worked out a relation akin to Bell's theorem that's based on the 'normalized compression difference' between subsets of the data. If the universe is classical, this quantity must stay less than zero. Quantum physics, they predicted, would allow it to reach 0.24. The theorists teamed up with Kurtsiefer's experimental group to test the idea.

First the team collected data from measurements on thousands of entangled photons. Then they used an open-source compression algorithm known as the Lempel-Ziv-Markov chain algorithm (used in the popular 7-zip archiver) to calculate the normalized compression differences. They find a value exceeding zero - 0.0494 ± 0.0076 - proving their system had crossed the classical-quantum boundary. The value is less than the maximum predicted because the compression does not reach the theoretical limit and the quantum states cannot be generated and detected perfectly.

It's not yet clear whether the new technique will find practical applications, but the researchers see their 'algorithmic' approach to the problem fitting into a bigger picture of how to think about physics. They derived their relation by considering correlations between particles produced by an algorithm fed to two computing machines.

"There is a trend to look at physical systems and processes as programs run on a computer made of the constituents of our universe," write the authors. This work presents an "explicit, experimentally testable example".

####

For more information, please click here

Contacts:
Evon Tan
evontan@nus.edu.sg

Dagomir Kaszlikowski
Principal Investigator and Associate Professor,
Centre for Quantum Technologies, National University of Singapore
Phone: +65 6516 5622
phykd@nus.edu.sg

Christian Kurtsiefer
Principal Investigator and Professor,
Centre for Quantum Technologies, National University of Singapore
Phone: +65 6516 1250
christian_kurtsiefer@nus.edu.sg

Copyright © National University of Singapore

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Quantum Physics

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Physics

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Software

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Luisier wins SNSF Advanced Grant to develop simulation tools for nanoscale devices July 8th, 2022

CEA and Spectronite Develop Software Radio For Spectrally Efficient Backhaul Solutions: Adapted for Spectronite’s X-Series Modem for 5G Systems, the Technology Enables Carrier Aggregation that Provides Radio Links with 10Gb/s Capacity March 4th, 2022

Oxford Instruments’ Atomfab® system is production-qualified at a market-leading GaN power electronics device manufacturer December 17th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project