Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > JPK’s NanoWizard AFM system is being used for cell studies in the Research Centre for Nanometer-scale Science & Advanced Materials at the Jagiellonian University in Krakow, Poland

Katarzyna Malek-Zietek, MSc, uses the JPK NanoWizard® AFM system at NANOSAM,
Jagiellonian University in Krakow
Katarzyna Malek-Zietek, MSc, uses the JPK NanoWizard® AFM system at NANOSAM, Jagiellonian University in Krakow

Abstract:
JPK Instruments, a world-leading manufacturer of nanoanalytic instrumentation for research in life sciences and soft matter, reports on the use of their NanoWizard® AFM system at the Jagiellonian University in Krakow where it is applied to make simultaneous imaging, mechanical and spectroscopy measurements.

JPK’s NanoWizard AFM system is being used for cell studies in the Research Centre for Nanometer-scale Science & Advanced Materials at the Jagiellonian University in Krakow, Poland

Berlin, Germany | Posted on May 31st, 2016

Dr Marek Szymonski is a Professor at the Research Centre for Nanometer-Scale Science and Advanced Materials (NANOSAM) located at the Jagiellonian University in Krakow, Poland. The aim of his research is to understand the signals that govern intracellular communication between hepatocytes and liver sinusoidal endothelial cells (LSECs) and between cardiomyocytes and cardiac microvascular endothelial cells (CMECs). This is because these microvascular bed-specific mechanisms determine the phenotype of the endothelium in an organ-specific way and may constitute the pathophysiological basis for the hepato-selective and cardio-selective therapy of endothelial dysfunction. Impairment of endothelial function is a primary cause or a result of many human diseases.

AFM plays an important role in the research. It is apparent, that knowledge of endothelium mechanical properties at the cellular level is necessary for the proper understanding of the cell functionalities and mechanical response to both native and pathological environment. Professor Szymonski takes a full advantage of the development of AFM-based techniques: imaging, nanoindentation and intermolecular force spectroscopy. These are used to perform experimental and theoretical investigations on both the mechanical properties and functioning of the endothelial cells. The ultimate goal is to determine quantitative parameters of the EC nanomechanical phenotype (stiffness, effective Young’s modulus) for various structural cell compartments (glycocalyx, cortical actin web, cytoplasm, and nucleus) and then to develop a nanomechanical model of endothelial dysfunction which could be practically used for “in vitro” investigations.

Professor Szymonski described his work applying AFM and what led him to the use of JPK’s NanoWizard® platform, “AFM-based microscopy and spectroscopy techniques applied to biological materials have been used in our laboratories over 15 years. In addition to AFM and often in parallel, we use optical fluorescence microscopy (confocal as well), Raman spectroscopy mapping (currently tip-enhanced Raman is of our particular interest) and scanning electron microscopy (SEM). We chose JPK because of its open design which is particularly suitable for combined (integrated) optical microscopy, AFM force microscopy and spectroscopy measurements. It provides good technical conditions for tip-enhanced Raman mapping.”

For more details about JPK’s NanoWizard® AFM AFM system and the applications for the bio & nano sciences, please contact JPK on +49 30726243 500. Alternatively, please visit the web site: www.jpk.com/ or see more on Facebook: www.jpk.com/facebook and on You Tube: www.youtube.com/jpkinstruments.

####

About JPK Instruments
JPK Instruments AG is a world-leading manufacturer of nanoanalytic instruments - particularly atomic force microscope (AFM) systems and optical tweezers - for a broad range of applications reaching from soft matter physics to nano-optics, from surface chemistry to cell and molecular biology. From its earliest days applying atomic force microscope (AFM) technology, JPK has recognized the opportunities provided by nanotechnology for transforming life sciences and soft matter research. This focus has driven JPK's success in uniting the worlds of nanotechnology tools and life science applications by offering cutting-edge technology and unique applications expertise. Headquartered in Berlin and with direct operations in Dresden, Cambridge (UK), Singapore, Tokyo, Shanghai (China), Paris (France) and Carpinteria (USA), JPK maintains a global network of distributors and support centers and provides on the spot applications and service support to an ever-growing community of researchers.

For more information, please click here

Contacts:
JPK Instruments AG
Colditzstrasse 34-36
Haus 13, Eingang B
Berlin 12099
Germany
T +49 30726243 500
F +49 30726243 999
www.jpk.com/


Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA
United Kingdom
T +44(0)1799 521881
M +44(0)7843 012997
www.talking-science.com/

Copyright © JPK Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project