MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > French Research Team Helps Extend MRI Detection of Diseases & Lower Health-Care Costs: CEA, INSERM and G2ELab Brings Grenoble Region’s Expertise In Advanced Medicine & Magnetism Applications to H2020 IDentIFY Project

Abstract:
Three Grenoble-based research and medical partners have been selected to join the European Union-funded IDentIFY project to significantly extend the capability of magnetic resonance imaging (MRI) in disease detection.

French Research Team Helps Extend MRI Detection of Diseases & Lower Health-Care Costs: CEA, INSERM and G2ELab Brings Grenoble Region’s Expertise In Advanced Medicine & Magnetism Applications to H2020 IDentIFY Project

Grenoble, France | Posted on June 21st, 2016

The four-year IDentIFY project brings together the complementary expertise of universities and research centers in U.K, Finland, France, Germany, Italy, and Poland. It is coordinated by the University of Aberdeen in Scotland U.K.

The French IDentIFY partners are CEA (led by Leti, a CEA Tech institute, and Inac), INSERM, and G2ELab.

The project, which is part of the EU Horizon 2020 program, was initiated by INSERM. It aims to further develop and help commercialize a characterization technique, called Fast Field-Cycling (FFC) MRI to obtain quantitative, disease­ related information that is invisible to standard MRI. Unlike standard MRI, in which scanners operate at a strong, fixed magnetic field, FFC-MRI scanners pioneered by the University of Aberdeen yield images of living organisms at varying low values of the magnetic field by fast switching of this field from high to near-zero values. This technique can deliver a wealth of unprecedented medical information at a lower cost than conventional MRI.

“This technology presents a huge opportunity to cost-effectively improve health care, especially for cancer, one of the world’s fastest-growing diseases,” said Marie Semeria, CEO of Leti, a CEA Tech institute. “The three Grenoble-based partners in the IDentIFY project are a strong testament to the area’s concentration of expertise in health care and advanced magnetism technology, and its many applications.”

Previous work on Fast-Field Cycling MRI at Aberdeen has shown it can have a major impact on the diagnosis and treatment of serious diseases. In fact, pilot studies have demonstrated the technology’s ability to detect cancer, osteoarthritis and sarcopenia, the loss of muscle mass and strength as part of the aging process.

With cancer, FFC-MRI will enable tumor grading, treatment planning and monitoring of the response to chemotherapy, and especially the characterization of peritumoral regions.

In addition, Fast Field-Cycling MRI has the potential to detect early changes in the brain caused by neurodegenerative disease processes. This may enable early diagnosis of Alzheimer's and Parkinson's diseases.

For over 50 years, following the French physicist Louis Néel (Nobel Prize in Physics, 1970), the Grenoble region has been recognized as a global leader in research and development of magnetism for advanced technological purposes. This expertise eventually resulted in a very accurate control of static and time-dependent low and ultra-low magnetic fields, which is a key challenge for FFC-MRI to work efficiently. For that purpose, precise measurements, mathematical modeling and real-time magnetic shielding will be implemented for the FFC NMR/MRI devices, thanks to the shared know-how of the G2ELab laboratory and Leti, which are working closely together on this ambitious project.

The contributions of the Grenoble participants to the IDentIFY project are:

CNRS/UGA/Grenoble INP: Environmental field measurement and modelling
Leti: Development of magnetic field correction coils and their associated electronics
INSERM: MRI methodology, tissue-bank testing and validation
Inac: Decades of experience in FFC-NMR relaxometry methods and measurements and the information that can be extracted from them through theoretical modelling. Linking of scientists to create the project and beyond.

In addition to Aberdeen University, other project participants include the Stelar Company (S.r.l., Mede, Italy), which has developed the first commercial FFC-NMR instruments; the University of Warmia and Mazury (Olsztyn, Poland), the Ilmenau University of Technology (Ilmenau, Germany) and the International Electric Co. (Helsingfors, Finland).

####

About CEA Leti
As one of three advanced-research institutes within the CEA Technological Research Division, Leti serves as a bridge between basic research and production of micro- and nanotechnologies that improve the lives of people around the world. It is committed to creating innovation and transferring it to industry. Backed by its portfolio of 2,800 patents, Leti partners with large industrials, SMEs and startups to tailor advanced solutions that strengthen their competitive positions. It has launched 54 startups. Its 8,500m² of new-generation cleanroom space feature 200mm and 300mm wafer processing of micro and nano solutions for applications ranging from space to smart devices. With a staff of more than 1,800, Leti is based in Grenoble, France, and has offices in Silicon Valley, Calif., and Tokyo. Follow us at www.leti.fr and @CEA_Leti.

About G2ELab (CNRS/UGA/Grenoble INP)

The “Centre National de la Recherche Scientifique” (CNRS) is a government-funded research organization under the responsibility of the French Ministry of Research. With 34,000 persons, 1,140 research units spread throughout the country, CNRS carries out research in all scientific fields of knowledge. Moreover, CNRS conducts interdisciplinary programs, one major objective being to promote interdisciplinarity to improve knowledge, ensure economic and technological development or solve complex societal needs. Its budget amounts to 3,415 billion Euros. The Grenoble Electrical Engineering Laboratory (G2ELab / UMR n°5269) set up by CNRS, Grenoble Institute of Technology and Université Grenoble Alpes covers a wide spectrum of expertise in the field of Electrical Engineering. Its activity can be summarized by the following keywords: electrical energy, materials, innovative processes and systems, modeling and design methods and softwares. The research carried out in G2Elab ranges from long term research up to collaborative research supported by a strong involvement in Partnerships with large companies and SMEs. With more than 100 permanent staff, 110 PhD and 50 Masters, G2Elab appears as a major actor both nationally and internationally in these areas.

About INAC (France)

According to the last report of the French High Council for the Evaluation of Research and Higher Education (HCERES), the Institut des Nanosciences et Cryogénie INAC of the CEA-Grenoble is a world-class institute producing fundamental and multidisciplinary research with a real willingness to valorise important findings through relevant partnerships with industry/technology developers. It hosts physicists for a larger part, but also chemists and biologists, providing an impressive panel of scientific expertise at a quite high level. More precisely, it covers several highly relevant research activities ranging from nanoscale physics to chemistry and technology at the frontier of biology, encompassing photonics, spintronics, several technologies for energy and health, and cryogenic engineering.

About INSERM (France)

Founded in 1964, the French National Institute of Health and Medical Research (INSERM) is a public scientific and technological institute which operates under the joint authority of the French Ministry of Health and French Ministry of Research. As the only French public research institute to focus entirely on human health, in 2008 INSERM took on the responsibility for the strategic, scientific and operational coordination of biomedical research. This key role as coordinator comes naturally to INSERM thanks to the scientific quality of its teams and its ability to conduct translational research, from the laboratory to the patient’s bed.

For more information, please click here

Contacts:
Agency
+33 6 74 93 23 47
sldampoux@mahoneylyle.com

Copyright © CEA Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Tools

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project