MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 'Origami' is reshaping DNA's future: Three leading researchers discuss how DNA may be used as a building material to help us develop a new generation of medicines, build electronic devices and probe the mysteries of proteins

While the design certainly elicited some chuckles, Paul Rothemund’s DNA orgami method, introduced 10 years ago, gave researchers a fast and powerful way to shape DNA into useful structures.Credit: Paul Rothemund
While the design certainly elicited some chuckles, Paul Rothemund’s DNA orgami method, introduced 10 years ago, gave researchers a fast and powerful way to shape DNA into useful structures.

Credit: Paul Rothemund

Abstract:
Ten years after its introduction, DNA origami, a fast and simple way to assemble DNA into potentially useful structures, is finally coming into its own.

'Origami' is reshaping DNA's future: Three leading researchers discuss how DNA may be used as a building material to help us develop a new generation of medicines, build electronic devices and probe the mysteries of proteins

Oxnard, CA | Posted on July 8th, 2016

In a recent paper in Journal of the American Chemical Society, a team of researchers used the technique to program DNA to form large, two-dimensional honeycombs and tubes. Because those structures are assembled biologically, rather than by conventional chemical reactions, they have very precise and repeatable structures. The researchers programmed those structures to hold gold nanoparticles in arrangements that gave them unusual optical properties.

This is just one of many potential applications for DNA origami, which uses short, easily synthesized strands of DNA to "staple" long DNA strands into complex structures.

In a roundtable, The Kavli Foundation brought together three pioneers in the field to discuss the technique's potential. They included one of the paper's co-authors, William Shih, an associate professor of Biological Chemistry and Molecular Pharmacology at Harvard Medical School and Cancer Biology at the Dana-Farber Cancer Institute.

In addition to using DNA origami to create optical devices, Shih is interested in using it to make new types of medicines. Existing drugs, he notes, are usually small molecules that "gum up the works of some process." Instead, he envisions exposing the immune system to DNA origami scaffolds that are holding pieces of virus. These complexes would "teach" the body to recognize the virus and develop antibodies to it before a live virus attacks.

"If we want to rival the immune system in effectiveness, we must rival it in complexity," Shih said in the roundtable discussion.

Other medicines might take advantage of the arrangement of proteins on cell surfaces, added Paul Rothemund, who received a MacArthur Fellowship for inventing DNA origami 10 years ago, and was one of the three participants. He is a research professor and faculty member at the Kavli Nanoscience Institute at the California Institute of Technology.

Antibodies, Rothemund argued, bind with invading molecules in atomically precise ways to neutralize them. Many researchers believe large-scale patterns of proteins on antibody surfaces control this behavior.

"DNA origami could allow us to arrange proteins in ways that give us access to the language of the immune system. This might make very sophisticated medicines possible," said Rothemund.

Rothemund also sees potential for DNA origami to integrate optically and electronically active molecules with semiconductors. Chemists already know how to synthesize single molecules that act like transistors or diodes. DNA origami could give them a way to organize those molecules into larger systems where they could interact with one another to perform computations.

"Paul [Rothemund] and I often try to compare computing with our field, which, if you think about it, involves programming biomolecules to self-assemble into whatever we want," said Shawn Douglas, an assistant professor of Cellular & Molecular Pharmacology in the University of California, San Francisco, School of Medicine. "We believe programmed biomolecules are going to be just as transformative."

One of Douglas' research interests is immobilizing proteins in DNA origami cages in order to take portraits of them using a technique called cryoelectron microscopy. This would free chemists from having to crystallize proteins, a process that is time-consuming and often fails, to understand their structure.

Douglas is also helping to move DNA programming forward in other ways. He developed caDNAno software, which enables researchers to design complex DNA origami structures. He also leads BIOMOD, an international biomolecular design competition for college students.

"If we can build out the biology the way we built out electronics, we can create all these amazing and useful things," Douglas said.

Rothemund agreed: For a long time, he says, scientists treated nature's designs as sacred, and believed that we could never fruitfully modify them.

"Today, there is a new spirit about engineering these systems, and we have tools that make these modifications easier than ever" he said. "So instead of merely studying a system, 20-year-olds are saying, 'Let's do something to make it more useful.'"

####

For more information, please click here

Contacts:
Jim Cohen
cohen@kavlifoundation.org
805-278-7495

Copyright © The Kavli Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Read the full conversation with William Shih, Paul Rothemund, and Shawn Douglas on The Kavli Foundation website:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

2 Dimensional Materials

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Organic Electronics

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Software

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Luisier wins SNSF Advanced Grant to develop simulation tools for nanoscale devices July 8th, 2022

CEA and Spectronite Develop Software Radio For Spectrally Efficient Backhaul Solutions: Adapted for Spectronite’s X-Series Modem for 5G Systems, the Technology Enables Carrier Aggregation that Provides Radio Links with 10Gb/s Capacity March 4th, 2022

Oxford Instruments’ Atomfab® system is production-qualified at a market-leading GaN power electronics device manufacturer December 17th, 2021

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Molecular Nanotechnology

Quantum pumping in molecular junctions August 16th, 2024

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Nanobiotechnology

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project