Home > Press > New reaction for the synthesis of nanostructures
![]() |
a) STM image displaying the formation of quasi-unidimensional polymers. b) STM image and models of the majority of products between coupled monomers. CREDIT: Dr. David Ecija, IMDEA Nanoscience |
Abstract:
The collaboration between the research groups of professors Pau Ballester and José R. Galan-Mascaros at the Institute of Chemical Research of Catalonia (ICIQ), Dr. Jonas Björk at Linköping University and the group of Dr. David Ecija at Institute IMDEA Nanoscience has allowed the development of a new chemical reaction for the synthesis of low-dimensional polymers that can be rationalised as phthalocyanine derivatives. The results obtained have been published in Nature Communications.
Surface-mediated synthesis of low-dimensional polymers from simple molecular precursors is a rapidly emerging field. In this work, the researchers introduce surface-confined thermally tunable reaction pathways as a route to select intramolecular versus intermolecular reactions yielding either monomeric phthalocyanines or low-dimensional phthalocyanine polymers, respectively.The precursor was designed and synthesised at ICIQ's laboratories. Next at IMDEA Nanoscience, it was deposited on a gold surface where it has been gently annealed to more than 300ºC in order to study its behaviour. When the temperature rises up to 275ºC, the polymerisation of the molecule occurs resulting in phthalocyanine unidimensional polymers (phthalocyanine tapes) that had not been synthesised so far. However, if the molecules are deposited on a substrate held at 300ºC, the polymeric growth is blocked and the precursor is transformed into individual phthalocyanines. This selectivity induced by temperature, despite being a promising strategy for increasing the synthetic versatility, had not been used on surfaces up to now. Nevertheless, this use could have huge advantages when engineering nanostructures with technological applications.
"On-surface synthesis is a promising strategy for the formation of nanostructures. This new thermally controlled reaction presents a very interesting alternative for the development of new polymeric materials, which will satisfy the growing demand from disciplines such as nanotechnology, information technology and biotechnology" -say Prof. Galan-Mascaros and Dr. David Ecija.
####
About Institute of Chemical Research of Catalonia (ICIQ)
The ICIQ is a member of the Barcelona Institute of Science and Technology and a leading international centre of chemical research. The institute has 19 research groups that work in the areas of catalysis (discovery and improvement of more sustainable chemical production processes and drug development) and renewable energies (generation of hydrogen from water, photovoltaic molecular, conversion of CO2 into materials and fuels of industrial interest). The ICIQ is a Centro de Excelencia Severo Ochoa, has received 14 grants from the European Research Council (ERC) and 9 of its researchers are ICREA professors.
About IMDEA Nanoscience:
IMDEA-Nanociencia is a private non profit Foundation created by initiative of the the regional Government of the Community of Madrid in November 2006 in order to shorten the distance between the research and society in the Madrid region and provide new capacity for research, technological development and innovation in the field of Nanoscience, Nanotechnology and Molecular Design. The Foundation manages the IMDEA-Nanociencia Institute, a new interdisciplinary research centre dedicated to the exploration of basic nanoscience and the development of applications of nanotechnology in connection with innovative industries.The IMDEA-Nanociencia Institute is part of one of the strategic lines of the Campus of International Excellence (CEI) UAM+CSIC.
For more information, please click here
Contacts:
Rosario Martinez
rmartinez@iciq.es
34-977-920-200-370
Corresponding authors:
Pablo Ballester
pballester@iciq.es
José R. Galan-Mascaros
jrgalan@iciq.es
David Ecija
david.ecija@imdea.org
Copyright © Institute of Chemical Research of Catalonia (ICIQ)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Chemistry
Quantum interference in molecule-surface collisions February 28th, 2025
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Nanobiotechnology
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |