Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design

This image shows ORNL software engineer Eric Lingerfelt (right) and Stephen Jesse (left) of ORNL's Center for Nanophase Materials Sciences led the development of the Bellerophon Environment for Analysis of Materials (BEAM), an ORNL platform that combines the lab's state-of-the art imaging technologies with advanced data analytics and high-performance computing to accelerate materials science research.
CREDIT: ORNL
This image shows ORNL software engineer Eric Lingerfelt (right) and Stephen Jesse (left) of ORNL's Center for Nanophase Materials Sciences led the development of the Bellerophon Environment for Analysis of Materials (BEAM), an ORNL platform that combines the lab's state-of-the art imaging technologies with advanced data analytics and high-performance computing to accelerate materials science research.

CREDIT: ORNL

Abstract:
Using today's advanced microscopes, scientists are able to capture exponentially more information about the materials they study compared to a decade ago--in greater detail and in less time. While these new capabilities are a boon for researchers, helping to answer key questions that could lead to next-generation technologies, they also present a new problem: How to make effective use of all this data?

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design

Oak Ridge, TN | Posted on July 24th, 2016

At the Department of Energy's Oak Ridge National Laboratory, researchers are engineering a solution by creating a novel infrastructure uniting the lab's state-of-the art imaging technologies with advanced data analytics and high-performance computing (HPC). Pairing experimental power and computational might holds the promise of accelerating research and enabling new opportunities for discovery and design of advanced materials, knowledge that could lead to better batteries, atom-scale semiconductors, and efficient photovoltaics, to name a few applications. Developing a distributed software system that delivers these advanced capabilities in a seamless manner, however, requires an extra layer of sophistication.

Enter the Bellerophon Environment for Analysis of Materials (BEAM), an ORNL platform that combines scientific instruments with web and data services and HPC resources through a user-friendly interface. Designed to streamline data analysis and workflow processes from experiments originating at DOE Office of Science User Facilities at ORNL, such as the Center for Nanophase Materials Sciences (CNMS) and Spallation Neutron Source (SNS), BEAM gives materials scientists a direct pipeline to scalable computing, software support, and high-performance cloud storage services provided by ORNL's Compute and Data Environment for Science (CADES). Additionally, BEAM offers users a gateway to world-class supercomputing resources at the Oak Ridge Leadership Computing Facility (OLCF)--another DOE Office of Science User Facility.

The end result for scientists is near-real-time processing, analysis, and visualization of large experimental datasets from the convenience of a local workstation--a drastic improvement over traditional, time-consuming data-analysis practices.

"Processes that once took days now take a matter of minutes," said ORNL software engineer Eric Lingerfelt, BEAM's lead developer. "Once researchers upload their data into BEAM's online data management system, they can easily and intuitively execute advanced analysis algorithms on HPC resources like CADES's compute clusters or the OLCF's Titan supercomputer and quickly visualize the results. The speedup is incredible, but most importantly the work can be done remotely from anywhere, anytime."

Building BEAM

A team led by Lingerfelt and CNMS's Stephen Jesse began developing BEAM in 2015 as part of the ORNL Institute for Functional Imaging Materials, a lab initiative dedicated to strengthening the ties between imaging technology, HPC, and data analytics.

Many of BEAM's core concepts, such as its layered infrastructure, cloud data management, and real-time analysis capabilities, emerged from a previous DOE project called Bellerophon--a computational workflow environment for HPC core collapse supernova simulations--led by the OLCF's Bronson Messer and developed by Lingerfelt. Initially released in 2010, Bellerophon's database has grown to include more than 100,000 data files and 1.5 million real-time rendered images of more than 40 different core-collapse supernova models.

Applying and expanding Bellerophon's compute and data strategies to the materials realm, however, presented multiple new technical hurdles. "We spent an entire year creating and integrating the BEAM infrastructure with instruments at CNMS," Lingerfelt said. "Now scientists are just starting to use it."

Through BEAM, researchers gain access to scalable algorithms--code developed by ORNL mathematicians and computational scientists to shorten the time to discovery. Additionally, BEAM offers users improved data-management capabilities and common data formats that make tagging, searching, and sharing easier. Lowering these barriers for the materials science community not only helps with verification and validation of current findings but also creates future opportunities for scientific discovery. "As we add new features and data-analysis tools to BEAM, users will be able to go back and run those on their data," Lingerfelt said.

A year to hours

One of the first data processing workflows developed for BEAM demonstrates its far-reaching potential for accelerating materials science.

At CNMS, users from around the world make use of the center's powerful imaging instruments to study materials in atomic detail. Conducting analysis of users' data, however, oftentimes slowed scientific progress. One common analysis process required users to format data derived from an imaging technique called band excitation atomic force microscopy. Conducted on a single workstation, the analysis oftentimes took days. "Sometimes people would take their measurement and couldn't analyze it even in the weeks they were here," Jesse said.

By transferring the microscopy data to CADES computing via the BEAM interface, CNMS users gained a 1,000-fold speedup in their analysis, reducing the work to a matter of minutes. A specialized fitting algorithm, which was re-implemented for utilization on HPC resources by ORNL mathematician Eirik Endeve, played a key role in tightening the feedback loop users relied upon to judge whether adjustments needed to be made to their experiment. "We literally reduced a year of data analysis to 10 hours," Lingerfelt said.

BEAM is also proving its worth at SNS--the most intense pulsed neutron beam system in the world--by tightening the interplay between theory and experiment. Working with Jose Borreguero from the Center for Accelerating and Modeling Materials at SNS, the BEAM team created a workflow that allows near-real-time comparison of simulation and neutron scattering data leveraging CADES computing. The feedback helps neutron scientists fine-tune their simulations and guides subsequent experiments. In the future, machine-learning algorithms could fully automate the process, freeing up scientists to focus on other parts of their work. "Humans, however, will still be at the center of the scientific process," Lingerfelt said.

"We're not here to replace every single step in the workflow of a scientific experiment, but we want to develop tools that complement things that scientists are already doing," he said.

Adding to the toolbox

Now that BEAM's infrastructure is in place, Lingerfelt's team is collaborating with advanced mathematics, data, and visualization experts at ORNL to regularly augment the software's toolbox.

"Once we've created a fully functioning suite, we want to open BEAM up to other material scientists who may have their own analysis codes but don't have the expertise to run them on HPC," Lingerfelt said. "Down the line we would like to have an open science materials-analysis library where people can validate analysis results publicly."

Currently Lingerfelt's team is developing a suite of algorithms to conduct multivariate analysis, a highly complex, multidimensional analytic process that sifts through vast amounts of information taken from multiple instruments on the same material sample.

"You need HPC for this type of analysis to even be possible," Jesse said. "We're gaining the ability to analyze high-dimension datasets that weren't analyzable before, and we expect to see properties in materials that weren't visible before."

###

The project was supported in part by ORNL's Laboratory Directed Research and Development program.

####

About Oak Ridge National Laboratory
UT-Battelle manages ORNL for the DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov/.

For more information, please click here

Contacts:
Jonathan Hines

865-574-6944

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

UC Irvine scientists create material that can take the temperature of nanoscale objects: The technology can track small temp changes in electronic devices, biological cells August 16th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Software

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Luisier wins SNSF Advanced Grant to develop simulation tools for nanoscale devices July 8th, 2022

CEA and Spectronite Develop Software Radio For Spectrally Efficient Backhaul Solutions: Adapted for Spectronite’s X-Series Modem for 5G Systems, the Technology Enables Carrier Aggregation that Provides Radio Links with 10Gb/s Capacity March 4th, 2022

Oxford Instruments’ Atomfab® system is production-qualified at a market-leading GaN power electronics device manufacturer December 17th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project