Home > Press > WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility
![]() |
Abstract:
Washington State University researchers have met the long-standing scientific challenge of watching a material change its crystal structure in real time.
While exposing a sample of silicon to intense pressure--due to the impact of a nearly 12,000 mph plastic projectile--they documented the transformation from its common cubic diamond structure to a simple hexagonal structure. At one point, they could see both structures as the shock wave traveled through the sample in less than half a millionth of a second.
Their discovery is a dramatic proof of concept for a new way of discerning the makeups of various materials, from impacted meteors to body armor to iron in the center of the Earth.
Until now, researchers have had to rely on computer simulations to follow the atomic-level changes of a structural transformation under pressure, said Yogendra Gupta, Regents professor and director of the WSU Institute of Shock Physics. The new method provides a way to actually measure the physical changes and to see if the simulations are valid.
"For the first time, we can determine the structure," Gupta said. "We've been assuming some things but we had never measured it."
Writing in Physical Review Letters, one of the leading physics journals, the researchers say their findings already suggest that several long-standing assumptions about the pathways of silicon's transformation "need to be reexamined."
The discovery was made possible by a new facility, the Dynamic Compression Sector at the Advanced Photon Source located at the Argonne National Laboratory. Designed and developed by WSU, the sector is sponsored by the U.S. Department of Energy's National Nuclear Security Administration, whose national security research mission includes fundamental dynamic compression science. The Advanced Photon Source synchrotron, funded by the Department of Energy's Office of Science, provided high-brilliance x-ray beams that pass through the test material and create diffraction patterns that the researchers use to decode a crystal changing its structure in as little as five billionths of a second.
"We're making movies," said Gupta. "We're watching them in real time. We're making nanosecond movies."
Stefan Turneaure, lead author of the Physical Review Letters paper and a senior scientist at the WSU Institute for Shock Physics, said the researchers exposed silicon to 19 gigapascals, nearly 200,000 times atmospheric pressure. The researchers accomplished this by firing a half-inch plastic projectile into a thin piece of silicon on a Lexan backing. While x-rays hit the sample in pulses, a detector captured images of the diffracted rays every 153.4 nanoseconds--the equivalent of a camera shutter speed of a few millionths of a second.
"People haven't used x-rays like this before," said Turneaure. "Getting these multiple snapshots in a single impact experiment is new."
"What I'm very excited about is we are showing how the crystal lattice, how this diamond structure that silicon starts out with, is related to this ending structure, this hexagonal structure," said Gupta. "We can see which crystal direction becomes which crystal direction. Stefan has done a great job. He's mastered that. We were able to show how the two structures are linked in real time."
####
For more information, please click here
Contacts:
Stefan Turneaure
stefant@wsu.edu
509-335-1834
Copyright © Washington State University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Imaging
Turning up the signal November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Tools
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Turning up the signal November 8th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |