MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > World's most powerful X-ray takes a 'sledgehammer' to molecules

An international team of more than 20 scientists has inadvertently discovered how to create a new type of crystal using light more than ten billion times brighter than the sun.
An international team of more than 20 scientists has inadvertently discovered how to create a new type of crystal using light more than ten billion times brighter than the sun.

Abstract:
The discovery, led by Associate Professor Brian Abbey at La Trobe in collaboration with Associate Professor Harry Quiney at the University of Melbourne, has been published in the journal Science Advances. Their findings reverse what has been accepted thinking in crystallography for more than 100 years.

World's most powerful X-ray takes a 'sledgehammer' to molecules

Melbourne, Australia | Posted on September 14th, 2016

The team exposed a sample of crystals, known as Buckminsterfullerene or Buckyballs, to intense light emitted from the world's first hard X-ray free electron laser (XFEL), based at Stanford University in the United States. The molecules have a spherical shape forming a pattern that resembles panels on a soccer ball.

Light from the XFEL is around one billion times brighter than light generated by any other X-ray equipment --even light from the Australian Synchrotron pales in comparison. Because other X-ray sources deliver their energy much slower than the XFEL, all previous observations had found that the X-rays randomly melt or destroy the crystal. Scientists had previously assumed that XFELs would do the same.

The result from the XFEL experiments on Buckyballs, however, was not at all what scientists expected. When the XFEL intensity was cranked up past a critical point, the electrons in the Buckyballs spontaneously re-arranged their positions, changing the shape of the molecules completely.

Every molecule in the crystal changed from being shaped like a soccer ball to being shaped like an AFL ball at the same time. This effect produces completely different images at the detector. It also altered the sample's optical and physical properties.

"It was like smashing a walnut with a sledgehammer and instead of destroying it and shattering it into a million pieces, we instead created a different shape - an almond!" Assoc. Prof. Abbey said.

"We were stunned, this is the first time in the world that X-ray light has effectively created a new type of crystal phase" said Associate Professor Quiney, from the School of Physics, University of Melbourne.

"Though it only remains stable for a tiny fraction of a second, we observed that the sample's physical, optical and chemical characteristics changed dramatically, from its original form," he said.

"This change means that when we use XFELs for crystallography experiments we will have to change the way interpret the data. The results give the 100-year-old science of crystallography a new, exciting direction," Assoc. Prof. Abbey said.

"Currently, crystallography is the tool used by biologists and immunologists to probe the inner workings of proteins and molecules -- the machines of life. Being able to see these structures in new ways will help us to understand interactions in the human body and may open new avenues for drug development."

###

The study was conducted by researchers from the ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe University, the University of Melbourne, Imperial College London, the CSIRO, the Australian Synchrotron, Swinburne Institute of Technology, the University of Oxford, Brookhaven National Laboratory, the Stanford Linear Accelerator (SLAC), the BioXFEL Science and Technology Centre, Uppsala University and the Florey Institute of Neuroscience and Mental Health.

####

For more information, please click here

Contacts:
Nerissa Hannink
nhannink@unimelb.edu.au
61-430-588-055

Copyright © University of Melbourne

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

UC Irvine scientists create material that can take the temperature of nanoscale objects: The technology can track small temp changes in electronic devices, biological cells August 16th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Tools

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project