MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Physicists decipher electronic properties of materials in work that may change transistors

Dr. Fan Zhang (right), assistant professor of physics, and senior physics student Armin Khamoshi recently published their research on transition metal dichalcogenides.
Dr. Fan Zhang (right), assistant professor of physics, and senior physics student Armin Khamoshi recently published their research on transition metal dichalcogenides.

Abstract:
University of Texas at Dallas physicists have published new findings examining the electrical properties of materials that could be harnessed for next-generation transistors and electronics.

Physicists decipher electronic properties of materials in work that may change transistors

Dallas, TX | Posted on December 6th, 2016

Dr. Fan Zhang, assistant professor of physics, and senior physics student Armin Khamoshi recently published their research on transition metal dichalcogenides, or TMDs, in the journal Nature Communications. Zhang is a co-corresponding author, and Khamoshi is a co-lead author of the paper, which also includes collaborating scientists at Hong Kong University of Science and Technology.

In recent years, scientists and engineers have become interested in TMDs in part because they are superior in many ways to graphene, a one-atom thick, two-dimensional sheet of carbon atoms arranged in a lattice. Since it was first isolated in 2004, graphene has been investigated for its potential to replace conventional semiconductors in transistors, shrinking them even further in size. Graphene is an exceptional conductor, a material in which electrons move easily, with high mobility.

"It was thought that graphene could be used in transistors, but in transistors, you need to be able to switch the electric current on and off," Zhang said. "With graphene, however, the current cannot be easily switched off."

Beyond Graphene

In their search for alternatives, scientists and engineers have turned to TMDs, which also can be made into thin, two-dimensional sheets, or monolayers, just a few molecules thick.

"TMDs have something graphene does not have -- an energy gap that allows the flow of electrons to be controlled, for the current to be switched on and off," Khamoshi said. "This gap makes TMDs ideal for use in transistors. TMDs are also very good absorbers of circularly polarized light, so they could be used in detectors. For these reasons, these materials have become a very popular topic of research."

One of the challenges is to optimize and increase electron mobility in TMD materials, a key factor if they are to be developed for use in transistors, Khamoshi said.

In their most recent project, Zhang and Khamoshi provided the theoretical work to guide the Hong Kong group on the layer-by-layer construction of a TMD device and on the use of magnetic fields to study how electrons travel through the device. Each monolayer of TMD is three molecules thick, and the layers were sandwiched between two sheets of boron nitride molecules.

The behavior of electrons controls the behavior of these materials," Zhang said. "We want to make use of highly mobile electrons, but it is very challenging. Our collaborators in Hong Kong made significant progress in that direction by devising a way to significantly increase electron mobility."

The team discovered that how electrons behave in the TMDs depends on whether an even or odd number of TMD layers were used.

"This layer-dependent behavior is a very surprising finding," Zhang said. "It doesn't matter how many layers you have, but rather, whether there are an odd or even number of layers."

Electron Physics

Because the TMD materials operate on the scale of individual atoms and electrons, the researchers incorporated quantum physics into their theories and observations. Unlike classical physics, which describes the behavior of large-scale objects that we can see and touch, quantum physics governs the realm of very small particles, including electrons.

On the size scale of everyday electrical devices, electrons flowing through wires behave like a stream of particles. In the quantum world, however, electrons behave like waves, and the electrical transverse conductance of the two-dimensional material in the presence of a magnetic field is no longer like a stream -- it changes in discrete steps, Zhang said. The phenomenon is called quantum Hall conductance.

"Quantum Hall conductance might change one step by one step, or two steps by two steps, and so on," he said. "We found that if we used an even number of TMD layers in our device, there was a 12-step quantum conductance. If we applied a strong enough magnetic field to it, it would change by six steps at a time."

Using an odd number of layers combined with a low magnetic field also resulted in a 6-step quantum Hall conductance in the TMDs, but under stronger magnetic fields, it became a 3-step by 3-step phenomenon.

"The type of quantum Hall conductance we predicted and observed in our TMD devices has never been found in any other material," Zhang said. "These results not only decipher the intrinsic properties of TMD materials, but also demonstrate that we achieved high electron mobility in the devices. This gives us hope that we can one day use TMDs for transistors."

###

The research was supported in part by the National Science Foundation, UT Dallas Research Enhancement Funds and UT Dallas Undergraduate Research Scholar Awards.

####

For more information, please click here

Contacts:
Amanda Siegfried
amanda.siegfried@utdallas.edu
972-883-4335

Copyright © University of Texas at Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Quantum Physics

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Magnetism/Magnons

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

News and information

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

2 Dimensional Materials

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Graphene/ Graphite

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Hardware

The present and future of computing get a boost from new research July 21st, 2023

A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible March 2nd, 2020

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Chip Technology

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Materials/Metamaterials/Magnetoresistance

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Announcements

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Quantum nanoscience

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project