Home > Press > Scientists take the first step toward creating efficient electrolyte-free batteries: Researchers have found unique atomic-scale processes in crystal lattice of antiferroelectric lead zirconate during synchrotron x-ray scattering experiment
These are distributions of diffuse X-ray scattering in the new phase of PbZrO3. Upper and lower rows correspond to different domain states CREDIT Press photo |
Abstract:
Scientists of Peter the Great Saint-Petersburg Polytechnic University (SPbPU) in collaboration with the French, Swiss and Polish researchers have found unique atomic-scale processes in crystal lattice of antiferroelectric lead zirconate during synchrotron x-ray scattering experiment. The discovery is the first step toward creating efficient electrolyte-free accumulators of electric energy.
The article "Critical scattering and incommensurate phase transition in antiferroelectric PbZrO3 under pressure" was published in Scientific Reports of the Nature group.
During the experiment, the scientists tried to understand the microscopic physics of antiferroelectrics - materials that are very difficult to describe theoretically. The model object of this group is lead zirconate. The properties of this crystal are representative among lead-based antiferroelectrics and, having studied them, scientists can use the obtained microscopic picture for describing the properties of sufficiently broad range of materials. Understanding the physics of these materials is essential for creating new functional materials targeted at particular applications.
Under the external influence this crystal may have two types of lattice dipole ordering, where the dipoles are arranged either parallel or antiparallel to each other. The functional properties of the material depend on the type of lattice order.
To analyze the functional properties, it is essential to understand how the structure of the material reacts to changing of the external parameters, such as temperature, pressure, field. During the experiment, the research group examined the influence of simultaneous change of temperature and pressure to the material properties. The measurements were performed at the ESRF (European Synchrotron Radiation Facility). The synchrotron x-ray source is required to provide the photon flux, which is sufficiently strong not only for ordinary Bragg scattering, but also diffuse scattering. The diffuse scattering became the key to finding new properties in the crystal lattice. Researches have determined that the symmetry of the crystal phases, which exists at high pressures and temperatures, is not the same as it was long time assumed.
The conditions at which the experiment was carried out are similar to those that can be created in future energy storage device (accumulators), where energy storage and release takes place due to switching between the crystal phases of different structures. Such structural switching will contribute to release of significant energy in a very short period of time, and lack of electrolytes has obvious advantages in terms of integration and miniaturization of energy storage elements.
In the research, the scientists managed to find the formation of the incommensurate phase, the phenomenon rarely occurring in crystal structures. This object is quite difficult to describe theoretically. Scientists of SPbPU and colleagues found that lead zirconate is the functional material, where the incommensurate phases could be located. "Based on the macroscopic measurements, researchers have suspected that the existing theories describing the crystal lattice are not fully correct. The contradictions arise on considering the evolution of the system in pressure-temperature space, and therefore we wanted to find out what processes occur on micro levels. Thus, during the experiment, we identified the incommensurate phase in substitution-free antiferroelectric for the first time," says Dr. Roman Burkovsky, associate professor at the "Physical electronics" department of the Institute of Physics, Nanotechnology and Telecommunications SPbPU, the first author of the paper.
Now the scientific community is faced with the task of construction of the theoretical models consistently describing energy states, and its reaction to external influence. "We have proved that such conditions exist in the in model antiferroelectric, thus highlighting the new challenge to the scientific community. By solving this problem, a big step in the description of functional materials will be taken," added Dr. Roman Burkovsky.
####
For more information, please click here
Contacts:
Raisa Bestugina
7-812-591-6675
Copyright © Peter the Great Saint-Petersburg Polytechnic University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||