Home > Press > Leti Coordinating Project to Adapt Obstacle-Detection Technology Used in Autonomous Cars for Portable and Wearable Systems: INSPEX to Combine Knowhow of Nine European Organizations to Create Portable and Wearable Spatial-Exploration Systems
The INSPEX demonstrator will integrate the INSPEX mobile detection device into a white cane for the visually impaired. For this application, an Augmented Reality Audio Interface will be integrated to provide spatial 3D sound feedback using extra-auricular earphones. This feedback will take into account head attitude, tracked by an AHRS in the headset, to provide 3D spatial sound feedback of an obstacle’s real direction and range. The context-aware communications will integrate the user with wider smart environments such as smart traffic lights, navigation beacons and ID tags associated with IoT objects. The user’s mobile device will allow integration with, for example, mapping apps. |
Abstract:
Leti, a technology research institute of CEA Tech, today announced a European project to develop a portable and wearable, multisensor and low-power spatial-exploration and obstacle-detection system for all conditions of weather and visibility.
The INSPEX system will adapt obstacle-detection capabilities common in autonomous cars for portable and wearable applications, including guidance for the visually impaired and blind, robotics, drones and smart manufacturing. It will be used for real-time, 3D detection, location and warning of obstacles under all environmental conditions. These include smoke, dust, fog, heavy rain/snow, and darkness, and in indoor and outdoor environments with unknown stationary and mobile obstacles.
Applying expertise and technologies of the nine partners in the three-year project, the system will be based on state-of-the-art range sensors such as LiDAR, UWB radar and MEMS ultrasound.
Coordinated by Leti, INSPEX will miniaturize and reduce the power consumption of these sensors to ease their integration in the new system. They will then be co-integrated with an inertial measurement unit (IMU), environmental sensing, wireless communications, signal-and-data processing, power-efficient data fusion and user interface, all in a miniature, low-power system designed to operate within wider smart and Internet of Things environments.
The main project demonstrator will embed the INSPEX system in a white cane for the visually impaired and provide 3D spatial audio feedback on obstacle location.
“Sophisticated obstacle-detection systems such as those in autonomous vehicles are typically large and heavy, have high power consumption and require large computational capabilities,” said Suzanne Lesecq, project coordinator at Leti. “The INSPEX team will work together to miniaturize and adapt this technology for individual and personal applications, which will require even greater capability for all-conditions obstacle detection. The project is a strong example of European innovation to bring leading-edge technology to a broader segment of users.”
In addition to applications for the visually impaired, drones and robots, the INSPEX system application domains are expected to include:
Human mobility – First responders, disabled persons
Instrumentation – Distance-measuring tools
Smart homes and factories – Assembly machines, security surveillance systems
Joining Leti in the project are:
University of Manchester, UK
Cork Institute of Technology, Ireland
STMicroelectronics SRL, Italy
Swiss Center for Electronics and Microtechnology CSEM, Switzerland
Tyndall National Institute University College Cork, Ireland
University of Namur ASBL, Belgium
GoSense, France
SensL Technologies Ltd., Ireland
####
About Leti
Leti, a technology research institute at CEA Tech, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, Leti pioneers micro-& nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. Leti tackles critical challenges in healthcare, energy and digital migration. From sensors to data processing and computing solutions, Leti’s multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 1,900, a portfolio of 2,700 patents, 91,500 sq. ft. of cleanroom space and a clear IP policy, the institute is based in Grenoble, France, and has offices in Silicon Valley and Tokyo. Leti has launched 60 startups and is a member of the Carnot Institutes network. This year, the institute celebrates its 50th anniversary. Follow us on www.leti.fr/en and @CEA_Leti.
CEA Tech is the technology research branch of the French Alternative Energies and Atomic Energy Commission (CEA), a key player in innovative R&D, defense & security, nuclear energy, technological research for industry and fundamental science. In 2015, Thomson Reuters identified CEA as the most innovative research organization in the world.
For more information, please click here
Contacts:
Press Contact
Agency
+33 6 74 93 23 47
Copyright © Leti
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Imaging
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Robotics
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
MEMS
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Automotive/Transportation
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||