Home > Press > Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future
“There are many thousands of combinations of materials and interfaces that we can create,” says associate professor Geoffrey Beach. “So with this wealth of material structures, rather than relying on the few materials that nature has given us, we can now design materials and their magnetic properties to exhibit the characteristics that we want.” Photo: M. Scott Brauer |
Abstract:
Geoffrey Beach has been tinkering and building things most of his life, including some 50 model rockets that he built and launched while in high school in Oklahoma. But it wasn’t until his undergraduate studies in physics that he zeroed in on the topic that has dominated his research ever since: the study of magnetism and how to control it.
In his work, Beach combines the deep, theoretical understanding of a physicist with an engineer’s passion for building and refining the devices needed to carry out his investigations.
“In high school and college, I was always interested in physics,” says Beach, who is an associate professor in MIT’s Department of Materials Science and Engineering, where he earned tenure in 2015. He received his bachelor’s degree from Caltech, where his interest in magnetism first came into focus.
During those college years studying physics, “everyone there wanted to work on gravity,” he says. “I liked the theoretical aspect, but I’ve always been a very hands-on person. I always liked to build things, and I really like to see how things work.”
Beach had an extra incentive to pursue his chosen field of physics: His father, a paper-industry executive, put Beach to work at a paper mill during his summer vacations, and chose for his son the hardest and dirtiest jobs to ensure he wasn’t getting any special treatment. “So I ended spending the summer up on the roof, cleaning out air-conditioning units in 100-degree heat,” Beach recalls.
Looking for a more career-building alternative, he sent out “a lot of requests” to many faculty members, seeking a summer job. One of those requests struck paydirt — and opened up a whole new avenue of study for Beach. “There was a professor working on condensed matter and magnetic materials, who responded,” he says. She set him up in a lab that gave him his introduction to the study of exotic magnetic processes.
Beach learned a variety of lab techniques and how to use specialized equipment, and then proceeded to figure out how to modify the equipment and develop new methods. “I realized that doing these things, I really could get my hands into every aspect” of the research, trying to unravel the properties of various newly developed materials, he says. “I loved it. I had found what I enjoyed doing.”
“Interfaces control everything”
Beach went to the University of California at San Diego for his doctorate, working in the industry-sponsored Center for Magnetic Recording Research, which covered all aspects of digital data storage, from the magnetic materials themselves to the signal-processing technology needed to process the data. “I was very intrigued by the magnetism problems,” he says, “but also by the utility of what I would do there, to address a real, pressing problem,” since magnetic recording is such a fundamental part of everything from computers to entertainment systems.
One of the key insights he gained from that work was the crucial role of boundaries between materials. “Interfaces control everything,” he says. “If you want to control and design material properties, you don’t start with the bulk material, you put dissimilar materials adjacent to one another.” Such interfaces that don’t occur naturally are “the interesting places where things can happen.”
While at UCSD, he worked on developing novel thin-film magnetic nanocomposites, with interfaces between metals and oxides, which turned out to have exceptionally fast response times for data recording.
He met his wife Kanna Shimuzu as an undergraduate, and they got married while they were in graduate school. After they both earned their PhDs, she found a job with IBM in Austin, Texas, and he looked for a position in the area. He quickly found a postdoc opening at the University of Texas that fit his interests, working on thin-film magnetism.
He and Shimuzu “finally got to live together, for the first time since we got married,” he says, after having spent their graduate school years commuting to be together on weekends. (She had been at Stanford University, about 470 miles away from San Diego). While in Texas, they had their first child, Emma. Alyssa, their second daughter, was born the day before Beach had his first interview at MIT. Shimuzu is now an engineer at working at Amazon.
Controlling magnetism electrically
It was at UT Austin that Beach began in earnest his investigation of how fast the poles of a magnetic material can be reversed — a key objective for enabling next-generation data systems for computers whose processing speeds continue to increase at a rapid pace. “That’s where I started to get into magnetization dynamics: How do materials respond to stimuli? How fast can magnetic materials respond?” he says. These dynamic effects turned out to work very differently as materials get down to nanoscale (billionths of a meter) sizes, Beach found.
While in Texas, he studied new materials whose magnetic properties could be altered electrically — a field now known as spintronics. Until that time, “In all of history, if you wanted to control a magnetic material, you needed another magnet,” he says, but these new materials could be changed by just applying a voltage. “Once you can do things electrically, you can wire these things together into a circuit, and you can start to manipulate information this way without anything physically moving, and without using magnets.”
That’s a big advantage, because it’s very hard to make very small, useful magnets; the magnetic field disperses around them. At the time, “these ideas of using electron properties in a material to control magnetism were just coming into fruition,” he says.
His experiments with tiny wires, just a few nanometers in diameter, showed that when the wire was composed of two oppositely magnetized segments joined together, interesting things could happen at the boundary where the two segments meet. That boundary could be pushed and pulled one way or the other by passing current through the wire — changes that could be used to encode data.
What’s more, he found that wires could be made with many segments in a row, and all the boundaries could be controlled in this way, so this could provide a way of encoding a number of data bits in a single, minuscule wire. But there were limitations: The system required too much current to be practical.
When Beach was hired for a faculty position at MIT in 2008, these kind of moving magnetic domains quickly became a major focus of his research. “The crux of my research now is to design more complex materials in which we can go around what seemed to be fundamental simple principles, by using the complexity of materials, and properties that emerge at designed interfaces, to really use materials science to overcome these limits and really explore new physics in materials,” he says.
For example, Beach and his co-workers have found that a kind of magnetic virtual particle can be created in these designed interfaces, and can be used to store and retrieve data at rates that are already comparable to those of conventional systems, but whose variants may have the potential to be much faster.
“There are many thousands of combinations of materials and interfaces that we can create,” he says. “So with this wealth of material structures, rather than relying on the few materials that nature has given us, we can now design materials and their magnetic properties to exhibit the characteristics that we want.”
That’s just one of many projects that Beach and his students continue to work on, in which creating and manipulating the interfaces between “simple, boring” materials can produce properties that are exciting, novel, and potentially useful for a wide variety of applications. “The possibilities are more or less endless, as far as we’re concerned,” he says.
####
For more information, please click here
Contacts:
Karl-Lydie Jean-Baptiste
Phone: (617) 253-1682
MIT News
Copyright © Massachusetts Institute of Technology
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Finding quantum order in chaos May 17th, 2024
Magnetism/Magnons
Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024
Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023
Study on Magnetic Force Microscopy wins 2023 Advances in Magnetism Award: Analysis of finite size effects reveals significant consequences for density measurements November 3rd, 2023
Twisted science: NIST researchers find a new quantum ruler to explore exotic matter October 6th, 2023
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Memory Technology
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||