Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Announcing the successful industrial feasibility test of a turnkey quantum Hall system for graphene characterisation and primary resistance metrology

Abstract:
Oxford Instrument announces the successful completion of the collaborative project with National Physical Laboratory (NPL) and the National Graphene Institute (NGI) at University of Manchester. The project has been partially funded by the Innovate UK for development of commercial measurement system for nanotechnology applications, reducing operational costs, time and complexity. The collaboration was led by Oxford Instruments and the turnkey system has been developed, verified and tested at company’s Tubney Wood site in UK. The quantum measurement system operates at cryogen free low magnetic fields and will enable primary resistance calibrations with unprecedented accuracies to be used by the national (metrology) laboratories and indusrial companies.    

Announcing the successful industrial feasibility test of a turnkey quantum Hall system for graphene characterisation and primary resistance metrology

Abingdon, UK | Posted on August 2nd, 2017

“This is an exciting achievement by the consortium in demonstrating the industrial feasibility of using graphene and 2D materials to commercialise quantum measurement systems and enable new innovative and turnkey solutions in standard measurements and 2D materials characterisation”, said Ziad Melhem, the Alliances Manager from Oxford Instruments NanoScience.

Graphene is a revolutionary, two-dimensional (2D), atomic scale carbon material with unmatched properties and is expected to revolutionise industry and consumer products over the coming years. Graphene's discoverers from Manchester University in the UK were awarded the Nobel Prize in 2010. Graphene is the first truly 2D material and is classed as a "super-material" offering extremely high electrical and thermal conductivity, hydrophobicity, strength, and impermeability to all gases. Graphene is widely seen as a new platform material for advanced manufacturing, with applications including electronics, fashion and sports wearable technology, mining, water conservation and purification, automotive structures and energy storage.

Demand for accurate measurements at the nanoscale will continue to increase and the graphene-enabled quantum resistance system will provide the high-end electronics instrumentation industry with a primary resistance standard for the first time. The system can be used directly on the factory floor dramatically reducing the calibration traceability chain and improving the precision of electronics instrumentation. The quantum Hall effect (QHE) is one of the most fundamental phenomena in solid-state physics and its observation in graphene was the acid test that proved that this material is a true two-dimensional crystal of the highest quality. The QHE is also the cornerstone of electrical metrology as it is the primary realisation of the unit for resistance, the ohm.
The UK has been a global leader in research on graphene since it was discovered at the University of Manchester and supported since then by over £80 million funding from the UK government. Innovate UK and the Engineering and Physical Sciences Research Council (EPSRC) are investing an additional £2.5 million in technical feasibility studies to target the applications of graphene with the greatest commercial potential. Oxford Instruments NanoScience, the National Physical Laboratory (NPL) and National Graphene Institute (NGI) at Manchester University were awarded a grant from Innovate UK, to test the operation of a turnkey quantum Hall system in industrial environment.
Professor Vladimir Falko, Director of the NGI at Manchester University commented, “It happens very rarely that blue-sky fundamental research delivers applicable results at the timescale of just one decade. In this case, we are lucky to be able to beat the clock.”

Dr JT Janssen, NPL Research Director said, “This is an exciting development because calibration laboratories have long wanted to have primary resistance traceability on the shop floor. This novel technology will make this a reality for the first time and open the door to many more innovative applications.”


Issued for and on behalf of Oxford Instruments NanoScience

####

About Oxford Instruments NanoScience
Oxford Instruments NanoScience designs, supplies and supports market-leading research tools that enable quantum technologies, new materials and device development in the physical sciences. Our tools support research down to the atomic scale through creation of high performance, cryogen-free low temperature and magnetic environments, based upon our core technologies in low and ultra-low temperatures, high magnetic fields and system integration, with ever-increasing levels of experimental and measurement readiness. Oxford Instruments NanoScience is a part of the Oxford Instruments plc group.



The National Physical Laboratory (NPL) is the UK’s National Measurement Institute and is a world-leading centre of excellence in developing and applying the most accurate measurement standards, science and technology available to man. For more than a century NPL has developed and maintained the nation’s primary measurement standards. These standards underpin an infrastructure of traceability throughout the UK and the world that ensures accuracy and consistency of measurement.

NPL ensures that cutting edge measurement science and technology have a positive impact in the real world. NPL delivers world-leading measurement solutions that are critical to commercial research and development, and support business success across the UK and the globe.

Vision & Mission

To deliver the highest economic and social impact as a world-leading National Measurement Institute through excellent responsive science and knowledge services.

NPL works with business, academia and Govt. to offer world leading measurement science and technology through:

· Contract Research & Development;
· Consultancy;
· Instrumentation;
· Licensing;
· Measurement Services;
· Knowledge Transfer.

Our services are based on the science capabilities developed from the world leading science programmes of the National Measurement System (NMS). The NMS is a network of laboratories that deliver a national measurement infrastructure to support UK business and citizens and is funded by the National Measurement Office, an executive agency of BIS (the Department for Business, Innovation and Skills).

NPL’s commercial services address the national and international challenges and priorities within the Energy, Sustainability, Advanced Manufacturing, Defence Aerospace & Security, Healthcare and Digital Economy market sectors. Our customers include publicly funded organisations such as central and regional Government (DEFRA, Home Office, MoD, Technology Strategy Board, DSTL, SEEDA, Environment Agency), private sector companies (Rolls Royce, Surrey Satellite Technology, BP, Jaguar), Universities (Surrey, Cambridge, Oxford, Imperial College), international agencies (EU, ESA) and overseas National Measurement Institutes (China, Indonesia, Singapore).

Good measurement improves productivity and quality; it underpins consumer confidence and trade and is vital to innovation. We undertake research and share our expertise with government, business and society to help enhance economic performance and the quality of life.

NPL’s measurements help to save lives, protect the environment, enable citizens to feel safe and secure, as well as supporting international trade and companies to innovation. Support in areas such as the development of advanced medical treatments and environmental monitoring helps secure a better quality of life for all.

About NGI – Manchester University

NGI is the national centre of excellence for graphene and two-dimensional materials (2DM) research in the UK. The NGI research team includes the discoverers of graphene and 2010 Nobel Prize winners A Geim and K Novoselov, over 20 academics from the Schools of Physics & Astronomy, Chemistry, Materials, and Electronics & Electrical Engineering, and over 70 early career researchers. NGI’s 7500m2 facilities include 1500m2 state-of-the-art clean room with a broad range of nanofabrication tools, optical and electrical transport charactrerisation laboratories, and chemical labs equipped for 2DM functionalization and for the development of 2DM-based nanocomposites. This environment for world-class research in graphene and other 2DM has already attracted over 40 industrial business partners, who collaborate with NGI on research projects of various sizes and technology readiness levels.

For more information, please click here

Contacts:
Soma Deshprabhu
Marketing Communications Manager
Oxford Instruments NanoScience
Tubney Woods, Abingdon, Oxon OX13 5QX, UK
Direct dial: +44 (0) 1865 393 813
Tel: +44 (0) 1865 393 200

Copyright © Oxford Instruments NanoScience

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Graphene/ Graphite

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project