Home > Press > Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies
Rice University scientists found they could selectively alter resonant frequencies (graph) of gold nanodisks by grouping them with slightly different placement and spacing. (Image courtesy of C. Yi/Rice University) |
Abstract:
Like a tuning fork struck with a mallet, tiny gold nanodisks can be made to vibrate at resonant frequencies when struck by light. In new research, Rice University researchers showed they can selectively alter those vibrational frequencies by gathering different-sized nanodisks into groups.
SUMMARY:
Like a tuning fork struck with a mallet, tiny gold nanodisks can be made to vibrate at resonant frequencies when struck by light. In new research this week, Rice University chemist Stephan Link and colleagues showed how to selectively alter those vibrational frequencies by gathering different-sized nanodisks into groups.
a-RiceLogo-72dpi-3in
Rice University
Office of Public Affairs / News & Media Relations
David Ruth
713-348-6327
Jade Boyd
713-348-6778
Rice U. study: Vibrating nanoparticles interact
Placing nanodisks in groups can change their vibrational frequencies
HOUSTON -- (Oct. 16, 2017) -- Like a tuning fork struck with a mallet, tiny gold nanodisks can be made to vibrate at resonant frequencies when struck by light. In new research, Rice University researchers showed they can selectively alter those vibrational frequencies by gathering different-sized nanodisks into groups.
"In the tuning fork analogy, it would be as if we could alter the sounds of several forks by bringing them close together," said Rice nanoscientist Stephan Link, the lead researcher on a study in this week's Proceedings of the National Academy of Sciences. "But at the nanoscale, we do not hear a tonal shift; we instead see a tiny change in color. We've shown that by grouping nanodisks, we can shift their acoustic resonance in an orderly and predictable way, which could be useful in optomechanics."
Optomechanics is a merged branch of physics, materials science and nanophotonics that focuses on the interactions between light and mechanical devices. Optomechanical systems are used in telecommunications, microscopy, quantum computing and sensors, including the laser interferometers that detected the first gravity waves in 2016.
Rice postdoctoral research associate Chongyue Yi and colleagues in Link's lab and the research group of Rice nanophotonics pioneer Naomi Halas created and tested more than a dozen sample groupings of nanodisks using electron beam lithography. Each group of tiny gold disks sat atop a flat surface called a substrate, which was sometimes ordinary glass and sometimes aluminum oxide. Yi, the study's first author, oversaw tests on nanodisks ranging in size from 78 to 178 nanometers in diameter, which were configured in patterns containing two to 12 disks.
Yi used two sets of laser beams to test the resonance of the groups. A pulse laser was used to strike the disks, which added a burst of energy analogous to the mallet striking the tuning fork. The light pulse provided an almost instant burst of heat, which caused the metal disks to expand and contract very fast, several billion times each second. A second laser beam was used to probe these vibrations by detecting tiny changes in their color in a microscope. The color was due to surface plasmons, coherent oscillations of conduction band electrons, which experienced intensity fluctuations with the frequency or speed at which the disks expanded and contracted.
Link and Yi's experiments showed the resonant frequency of smaller disks shifted about 20 percent when they were placed near larger disks. In collaboration with theorists at Rice and the University of Melbourne, the researchers determined that the acoustic vibrations from larger particles were traveling through the substrate to modify the resonances of smaller particles. To test this explanation, Yi conducted further experiments to show he could predictably alter the vibration frequencies of his samples by varying their size and distance as well as the surfaces to which they were attached.
"It really depends on what substrate we are using," Yi said. "With glass, the frequency change is larger than with aluminum oxide. Glass is softer. If the material is more stiff, it is harder to make it vibrate."
Link said the research points to a new way for engineers to convert light energy into mechanical energy and vice versa at the nanoscale.
"This gives us a new knob for precise tuning of the light output from metallic nanostructures," he said. "It opens the door for new applications in secure communications, sensing and more."
Study co-authors include Naomi Halas, Pratiksha Dongare, Man-Nung Su, Wenxiao Wang, Fangfeng Wen, Wei-Shun Chang and Peter Nordlander, all of Rice, and Debadi Chakraborty and John Sader, both of the University of Melbourne.
The research was supported by the Welch Foundation, the Army Research Office, the Air Force Office for Scientific Research, the National Science Foundation and the Australian Research Council.
####
About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and for lots of race/class interaction and No. 2 for happiest students by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to http://tinyurl.com/RiceUniversityoverview
Follow Rice News and Media Relations via Twitter @RiceUNews
For more information, please click here
Contacts:
David Ruth
713-348-6327
Jade Boyd
713-348-6778
Copyright © Rice University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
The DOI of the PNAS paper is: 10.1073/pnas.1712418114
Related News Press |
Wireless/telecommunications/RF/Antennas/Microwaves
HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Optical computing/Photonic computing
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||