Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science

In the crystal developed by UCLA researchers, a metallo-organic framework (top and bottom layers of molecules) surrounds central sphere-like shapes, which can rotate at up to 50 billion rotations per second.
CREDIT
Kendall Houk Laboratory/UCLA
In the crystal developed by UCLA researchers, a metallo-organic framework (top and bottom layers of molecules) surrounds central sphere-like shapes, which can rotate at up to 50 billion rotations per second. CREDIT Kendall Houk Laboratory/UCLA

Abstract:
Molecular machines, much smaller than single cells, may one day be able to deliver drugs to kill cancer cells or patrol your body for signs of disease. But many applications of these machines require large arrays of rock-hard moving parts, which would be difficult to build with typical biological structures.

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science

Los Angeles, CA | Posted on January 16th, 2018

Molecules that makes up the solid crystals found in nature are generally so tightly packed together that there's no room for any of them to move. So despite their strength and durability, solid crystals have generally not been considered for applications in molecular machines, which must have moving parts that can respond to stimuli.

Now, UCLA researchers have formed a crystal out of molecules that resemble gyroscopes with solid frames. Since each molecule has an exterior case surrounding a rotating axis, the crystal has a solid exterior but contains moving parts.

The new crystal, described in the journal Proceedings of the National Academy of Sciences, is the first proof that a single material can be both static and moving, or amphidynamic.

"For the first time, we have a crystalline solid with elements that can move as fast inside the crystal as they would in outer space," said Miguel García-Garibay, a UCLA professor of chemistry and biochemistry and senior author of the study.

To create repetitive arrays of molecular machines, or smart materials, researchers have often turned to liquid crystals, which are engineered to use in LCD television screens but also are found in nature. But liquid crystals are relatively slow: Each molecule must entirely change orientation to alter how it interacts with light, to change color or show a new image on a screen, for instance.

García-Garibay and colleagues set out to design a crystalline solid with faster-moving parts. As a starting point, they considered larger, everyday objects that they might be able to replicate at a microscopic scale.

"Two objects we found to be very interesting were compasses and gyroscopes," said García-Garibay, who also is dean of physical sciences in the UCLA College. "We began to create large-scale models; I literally ordered a few hundred toy compasses and started building structures out of them."

There were two keys to mimicking a compass or gyroscope at a smaller scale, the researchers found. First, the structure's exterior case had to be strong enough to maintain its shape around mostly empty space. Second, the interior rotating component had to be as close to spherical as possible.

After some trial and error, the team designed a structure that worked: a metallo-organic case containing both metal ions and a carbon backbone surrounding a spherical molecule called bicyclooctane. In experiments, the resulting compound -- 1,4-bicyclo[2.2.2]octane dicarboxylic acid, a metal-organic framework that the researchers called BODCA-MOF -- behaved as an amphidynamic material.

Not only that, but computer simulations of the crystal confirmed what the experiments were showing: the constantly-spinning BODCA spheres were each rotating at up to 50 billion rotations per second, as fast as they would have in empty space, whether they were rotating clockwise or counterclockwise.

"We were able to use the equations of physics to validate the motions that were occurring in this structure," said Kendall Houk, UCLA's Saul Winstein Professor of Organic Chemistry and one of the paper's authors. "It's an amazing discovery that you can have extremely rapid motions inside this thing that externally is like a rock."

Having proven that such a compound can exist, the researchers now plan to try introducing new properties into BODCA-MOF that would allow an electric, magnetic or chemical stimulus to alter the molecules' motion.

"The ultimate goal is to be able to control motion in these molecular machines so that we can create materials that respond to external stimuli," García-Garibay said. That could lead to faster computer and electronic displays, he added, or technologies that interact with radar, sonar or chemicals.

"With such low barriers for rotation, the results mark substantial progress toward freely rotating molecular components embedded in a crystalline matrix, and toward potential functionality," said Stuart Brown, a UCLA professor of physics and astronomy, and another author of the paper.

###

The study's other authors are Cortnie Vogelsberg, a former graduate student, and Song Yang, a current graduate student, both in UCLA's chemistry and biochemistry department; Fernando Uribe-Romo of the University of Central Florida; and Andrew Lipton of Pacific Northwest National Laboratory.

Funding for the study was provided by the National Science Foundation.

####

For more information, please click here

Contacts:
Stuart Wolpert

310-206-0511

Copyright © University of California - Los Angeles

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Magnetism/Magnons

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Molecular Machines

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020

Molecular Nanotechnology

Quantum pumping in molecular junctions August 16th, 2024

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project