Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers move closer to practical photonic quantum computing: New method fills critical need to measure large-scale quantum correlation of single photons

Abstract:
For the first time, researchers have demonstrated a way to map and measure large-scale photonic quantum correlation with single-photon sensitivity. The ability to measure thousands of instances of quantum correlation is critical for making photon-based quantum computing practical.

Researchers move closer to practical photonic quantum computing: New method fills critical need to measure large-scale quantum correlation of single photons

Washington, DC | Posted on February 28th, 2019

In Optica, The Optical Society's journal for high impact research, a multi-institutional group of researchers reports the new measurement technique, which is called correlation on spatially-mapped photon-level image (COSPLI). They also developed a way to detect signals from single photons and their correlations in tens of millions of images.

"COSPLI has the potential to become a versatile solution for performing quantum particle measurements in large-scale photonic quantum computers," said the research team leader Xian-Min Jin, from Shanghai Jiao Tong University, China. "This unique approach would also be useful for quantum simulation, quantum communication, quantum sensing and single-photon biomedical imaging."

Interacting photons

Quantum computing technology promises to be significantly faster than traditional computing, which reads and writes data encoded as bits that are either a zero or one. Instead of bits, quantum computing uses qubits that can be in two states at the same time and will interact, or correlate, with each other. These qubits, which can be an electron or photon, allow many processes to be performed simultaneously.

One important challenge in the development of quantum computers is finding a way to measure and manipulate the thousands of qubits needed to process extremely large data sets. For photon-based methods, the number of qubits can be increased without using more photons by increasing the number of modes encoded in photonic degrees of freedom-- such as polarization, frequency, time and location -- measured for each photon. This allows each photon to exhibit more than two modes, or states, simultaneously. The researchers previously used this approach to fabricate the world's largest photonic quantum chips, which could possess a state space equivalent to thousands of qubits.

However, incorporating the new photonic quantum chips into a quantum computer requires measuring all the modes and their photonic correlations at a single-photon level. Until now, the only way to accomplish this would be to use one single-photon detector for each mode exhibited by each photon. This would require thousands of single-photon detectors and cost around 12 million dollars for a single computer.

"It is economically unfeasible and technically challenging to address thousands of modes simultaneously with single-photon detectors," said Jin. "This problem represents a decisive bottleneck to realizing a large-scale photonic quantum computer."

Single-photon sensitivity

Although commercially available CCD cameras are sensitive to single photons and much cheaper than single-photon detectors, the signals from individual photons are often obscured by large amounts of noise. After two years of work, the researchers developed methods for suppressing the noise so that single photons could be detected with each pixel of a CCD camera.

The other challenge was to determine a single photon's polarization, frequency, time and location, each of which requires a different measurement technique. With COSPLI, the photonic correlations from other modes are all mapped onto the spatial mode, which allows correlations of all the modes to be measured with the CCD camera.

To demonstrate COSPLI, the researchers used their approach to measure the joint spectra of correlated photons in ten million image frames. The reconstructed spectra agreed well with theoretical calculations, thus demonstrating the reliability of the measurement and mapping method as well as the single-photon detection. The researchers are now working to improve the imaging speed of the system from tens to millions of frames per second.

"We know it is very hard to build a practical quantum computer, and it isn't clear yet which implementation will be the best," said Jin. "This work adds confidence that a quantum computer based on photons may be a practical route forward."

####

About The Optical Society
Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

About Optica

Optica is an open-access, online-only journal dedicated to the rapid dissemination of high-impact peer-reviewed research across the entire spectrum of optics and photonics. Published monthly by The Optical Society (OSA), Optica provides a forum for pioneering research to be swiftly accessed by the international community, whether that research is theoretical or experimental, fundamental or applied. Optica maintains a distinguished editorial board of more than 60 associate editors from around the world and is overseen by Editor-in-Chief Alex Gaeta, Columbia University, USA. For more information, visit Optica.

For more information, please click here

Contacts:
James Merrick

202-416-1994

edia Contacts:

Aaron Cohen
(301) 633-6773


Copyright © The Optical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: K. Sun, J. Gao, M.-M. Cao, Z.-Q. Jiao, Y. Liu, Z.-M. Li, E. Poem, A. Eckstein, R.-J. Ren, X.-L. Pang, H. Tang, I. A. Walmsley, X.-M. Jin, "Mapping and Measuring Large-scale Photonic Correlation with Single-photon Imaging," Optica, 6, 3, 244-249 (2019):

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Quantum Computing

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Optical computing/Photonic computing

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project