Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Studying quantum phenomena in magnetic systems to understand exotic states of matter

Abstract:
Scientists at Tokyo Institute of Technology (Tokyo Tech), Aoyama-Gakuin University, and J-PARC Center unify condensed matter physics and quantum physics by experimentally characterizing magnetism-related quantum phenomena in Ba2CoSi2O6Cl2.

Studying quantum phenomena in magnetic systems to understand exotic states of matter

Tokyo, Japan | Posted on August 21st, 2019

Apart from the states of matter that we are all aware of and accustomed to, which correspond to solids, liquids, and gases, more exotic states can be generated in specific materials under special conditions. Such states are of great interest to physicists because they help them gain a deeper understanding of quantum phenomena, which is key for scientists and engineers to innovate state-of-the-art technology.

Bose–Einstein condensate is one such state of matter that occurs at very low temperatures. In this state, most of the constituent particles of the condensate are in the so-called "ground state", which is the state with the lowest energy, and microscopic quantum phenomena can be easily observed. Interestingly, this state can also be exhibited by quasiparticles, which are not actual particles but represent collective microscopic excitations in a system and can be thus used to describe the system in a simplified, yet very useful manner. Magnons, a type of quasiparticle that manifests in magnetic materials, are collective excitations originating from electrons in a crystal. Magnons can normally hop between different locations in the crystal; however, in some compounds and under the effect of a magnetic field, they can be trapped in a kind of catch-22 situation, which results in them exhibiting rigid crystallinity. This is a very interesting quantum phenomenon called "magnon crystallization", where the magnons are said to be in a ‘frustrated' state.

To explore this peculiar effect, a team of scientists led by Prof. Hidekazu Tanaka from Tokyo Tech, worked on characterizing the magnetic excitations occurring in a magnetic insulator bearing the chemical formula Ba2CoSi2O6Cl2. They performed neutron scattering experiments, in which neutron beams were fired onto Ba2CoSi2O6Cl2 crystals at different energies and angles to determine the properties of the crystals. Based on the results of these experiments, the team demonstrated that magnon crystallization occurs in Ba2CoSi2O6Cl2 and attributed the origin of this ordered state to the fundamental electronic interactions in the material, from a quantum-mechanical perspective. "Until recently, experimental studies on magnon crystallization have been limited to the Shastry–Sutherland compound, SrCu2(BO3)2, and this study is an attempt to investigate this fascinating quantum phenomenon in a different material," remarks Prof. Tanaka.

Understanding the ordering of magnons and their effects on the micro- and macroscopic magnetic properties of crystals could provide researchers valuable insight to correlate condensed matter physics with the principles of quantum mechanics. "This work shows that highly frustrated quantum magnets provide playgrounds for interacting quantum particles," concludes Prof. Tanaka. As recommended by the scientists, additional studies will be needed to further understand the Ba2CoSi2O6Cl2 system and gain a deeper foothold into quantum mechanics and its potential applications.

####

For more information, please click here

Contacts:
Professor Hidekazu Tanaka

School of Science

Email
Tel +81-3-5734-3541

Contact

Public Relations Section, Tokyo Institute of Technology

Email
Tel +81-3-5734-2975

Copyright © Tokyo Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Quantum Physics

Energy transmission in quantum field theory requires information September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Magnetism/Magnons

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Study on Magnetic Force Microscopy wins 2023 Advances in Magnetism Award: Analysis of finite size effects reveals significant consequences for density measurements November 3rd, 2023

Twisted science: NIST researchers find a new quantum ruler to explore exotic matter October 6th, 2023

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project