Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Breaking the temperature barrier in small-scale materials testing

Materials science and engineering professor Shen Dillion uses electron microscopy and targeted laser heating for ultra-high temperature testing of aeronautical materials.

Photo by Steph Adams
Materials science and engineering professor Shen Dillion uses electron microscopy and targeted laser heating for ultra-high temperature testing of aeronautical materials. Photo by Steph Adams

Abstract:
Researchers have demonstrated a new method for testing microscopic aeronautical materials at ultra-high temperatures. By combining electron microscopy and laser heating, scientists can evaluate these materials much more quickly and inexpensively than with traditional testing.

Breaking the temperature barrier in small-scale materials testing

Champaign, IL | Posted on February 28th, 2020

The findings of the new study, conducted by Shen Dillon, a professor of materials science and engineering at the University of Illinois at Urbana-Champaign, and collaborators from Sandia Laboratories, are published in the journal Nano Letters.

A decade ago, advancements in aeronautical materials involved testing large, expensive models and years of development. Scientists and engineers now use micro-scale experimentation to help create new materials and understand the chemical and physical properties that lead to material failure.

“Micro-scale mechanical testing provides opportunities to break the materials down into their components and see defects at the atomic level,” Dillon said.

Until now, researchers have been unable to conduct successful micro-scale materials tests at the extreme temperatures experienced by critical components during flight.

“Unfortunately, it’s really difficult to perform experiments with new materials or combinations of existing materials at ultra-high temperatures above 1,000 C because you run into the problem of destroying the testing mechanisms themselves,” Dillon said.

This temperature barrier has slowed the development of new materials for commercial applications such as rockets and vehicles, which require testing at temperatures well above the current research’s limit of “a few hundred degrees Celsius,” he said. “The method we demonstrate in the paper will significantly reduce the time and expense involved in making these tests possible.”

Their ultra-high temperature test combined two commonly used tools in a unique way. Using a transmission electron microscope and targeted laser heating, they were able to see and control where and how the material deformed at the highest temperature possible before the sample evaporated.

“We were able to bring the laser together with the mechanical tester so precisely with the TEM that we could heat the sample without overheating the mechanical tester,” Dillon said. “Our test allows you to grow a thin film of the material without any special processing and then put it in the microscope to test a number of different mechanical properties.”

As proof of concept, the study tested zirconium dioxide – used in fuel cells and thermal barrier coatings – at temperatures up to 2,050 C, “a temperature well above anything that you could do previously,” Dillon said.

Dillon says the paper will result in “more people using this technique for high-temperature tests in the future because they are much easier to do and the engineering interest is definitely there.”

Dillon also is affiliated with the Materials Research Lab at Illinois. The National Science Foundation and Army Research Office supported this study.

####

For more information, please click here

Contacts:
Shen Dillon
217-244-5622


STEPH ADAMS
SCIENCE WRITER

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper “In situ transmission electron microscopy for ultrahigh temperature mechanical testing of ZrO2” is available online and from the U. of I. News Bureau. DOI: 10.1021/acs.nanolett.9b04205:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Aerospace/Space

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project