Home > Press > Graphene heterostructures with black phosphorus, arsenic enable new infrared detectors
Image CREDIT Daria Sokol/MIPT Press Office |
Abstract:
MIPT scientists and their colleagues from Japan and the U.S. have calculated the parameters of photodetectors comprised by layers of graphene and a combination of black phosphorus and black arsenic. These sensors are able to detect radiation with energy less than the band gap of the constituent layers without graphene. It is also easy to modify them in order to increase their sensitivity to the required wavelength of light. Such sensors could replace any far-infrared and terahertz radiation detectors. The research findings were published in the journal Optics Express.
The new sensors will benefit many areas of science and technology. The far-infrared band is substantial both for household applications and for fundamental science. These waves are emitted by cosmic dust, whose study reveals the evolution of galaxies. Infrared light sensors are used in night vision equipment, remote controls, homing missiles, and heartbeat sensors. Terahertz radiation offers a less dangerous alternative to X-ray baggage scanners.
The researchers considered far-infrared interband photodetectors based on a graphene monolayer. The graphene was surrounded by layers made of black phosphorus and black arsenic in varying proportions. By changing the ratio of these substances, it is possible to shift the working range of the photodetector. The energies inaccessible to electrons in black phosphorus and arsenic are different. The detector operates by registering an electron or hole entering the conduction band of black phosphorus or arsenic following a transition between two energy bands of graphene. However, temperature effects cause infrared and terahertz sensors to detect signal even "in the dark," in the absence of radiation. The layered structures examined in the study turned out to experience a dark current much lower than in those used today.
"We calculated the parameters of the light-sensitive elements for far-infrared detection based on a graphene monolayer. Such devices can replace almost any far-infrared and terahertz radiation sensors used today. The decreased dark current and the high photosensitivity significantly improve the signal-to-noise ratio even for low-intensity radiation. By applying a carefully calibrated voltage, the working range of the detectors can be changed without affecting signal reception quality. Such sensors could enhance the performance of infrared telescopes. According to calculations, at high temperatures the detectors will produce a much cleaner signal than the detectors used now," adds Victor Ryzhii, the head of the 2D Materials and Nanodevices Laboratory.
####
For more information, please click here
Contacts:
Varvara Bogomolova
7-916-147-4496
@phystech_en
Copyright © Moscow Institute of Physics and Technology
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Imaging
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
News and information
New method in the fight against forever chemicals September 13th, 2024
Energy transmission in quantum field theory requires information September 13th, 2024
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
2 Dimensional Materials
Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024
Sensors
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Energy transmission in quantum field theory requires information September 13th, 2024
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Announcements
New discovery aims to improve the design of microelectronic devices September 13th, 2024
New method in the fight against forever chemicals September 13th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Tools
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||