Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Extensive review of spin-gapless semiconductors: Next-generation spintronics candidates: spin-gapless semiconductors (SGSs) bridge the zero-gap materials and half-metals

The band structures of parabolic and Dirac type SGS materials with spin-orbital coupling, which leads to the quantum anomalous Hall effect.

CREDIT
FLEET
The band structures of parabolic and Dirac type SGS materials with spin-orbital coupling, which leads to the quantum anomalous Hall effect. CREDIT FLEET

Abstract:
A University of Wollongong team has published an extensive review of spin-gapless semiconductors (SGSs) .

Extensive review of spin-gapless semiconductors: Next-generation spintronics candidates: spin-gapless semiconductors (SGSs) bridge the zero-gap materials and half-metals

Clayton, Australia | Posted on June 26th, 2020

Spin gapless semiconductors (SGSs) are a new class of zero gap materials which have fully spin polarised electrons and holes.

The study tightens the search for materials that would allow for ultra-fast, ultra-low energy 'spintronic' electronics with no wasted dissipation of energy from electrical conduction.

Their defining property of SGS materials relates to their 'bandgap', the gap between the material's valence and conduction bands, which defines their electronic properties.

In general, one spin channel (ie, one of the spin directions, up or down) is semiconducting with a finite band gap, while the other spin channel has a closed (zero) band gap.

In a spin-gapless semiconductor (SGS), conduction and valence band edges touch in one spin channel, and no threshold energy is required to move electrons from occupied (valence) states to empty (conduction) states.

This property gives these materials unique properties: their band structures are extremely sensitive to external influences (eg, pressure or magnetic field).

Most of the SGS materials are all ferromagnetic materials with high Curie temperatures.

The band structures of the SGSs can have two types of energy-momentum dispersions: Dirac (linear) dispersion or parabolic dispersion.

The new review investigates both Dirac and the three sub-types of parabolic SGSs in different material systems.

For Dirac type SGS, their electron mobility is two to four orders of magnitude higher than in classical semiconductors. Very little energy is needed to excite electrons in an SGS, charge concentrations are very easily 'tuneable'. For example, this can be done by introducing a new element (doping) or by application of a magnetic or electric field (gating).

The Dirac type spin gapless semiconductors exhibit fully spin polarized Dirac cones and offer a platform for spintronics and low-energy consumption electronics via dissipationless edge states driven by the quantum anomalous Hall effect.

"Potential applications of SGSs in next-generation spintronic devices are outlined, along with low- electronics, and optoelectronics with high speed and low energy consumption." according to Professor Xiaolin Wang, who is the Director of Institute for Superconducting and Electronic Materials, UoW and the theme leader of FLEET.

Since spin-gapless semiconductors (SGSs) were first proposed by s Professor Xiaolin Wang in 2008, efforts worldwide to find suitable candidate materials have particularly focussed on Dirac type SGSs.

In the past decade, a large number of Dirac or parabolic type SGSs have been predicted by density functional theory, and some parabolic SGSs have been experimentally demonstrated in both monolayer and bulk materials.

###

The authors acknowledge funding support from the Australian Research Council through the Centre of Excellence program, and thank Tania Silver for her contribution.

NOVEL MATERIALS AT FLEET

The properties of novel and atomically-thin materials are studied at FLEET, an Australian Research Council Centre of Excellence, within the Centre's Enabling technology A.

The Centre for Future Low-Energy Electronics Technologies (FLEET) is a collaboration of over a hundred researchers, seeking to develop ultra-low energy electronics to face the challenge of energy use in computation, which already consumes 8% of global electricity, and is doubling each decade.

Review co-author Prof Xiaolin Wang leads FLEET's University of Wollongong node, as well as leading the Enabling Technology team developing the novel and atomically thin materials underpinning FLEET's search for ultra-low energy electronics, managing synthesis and characterisation of novel 2D materials at the University of Wollongong

Prof Wang leads FLEET's efforts to exploit charge and spin quantum effects in magnetic topological insulators as well as fabricating high-quality samples for joint research with FLEET researchers at Monash, UNSW, ANU and RMIT.

Dr Zengji Yue is a FLEET Research Fellow working alongside Prof Wang at the Institute for Superconducting & Electronic Materials and Australian Institute for Innovative Materials (AIIM) in University of Wollongong, Australia. Dr Yue's research focuses on nanofabrication, quantum transport, and optics of topological and spin gapless materials. He designs and fabricates electronic and optical devices taking advantage of novel physics of topological materials.

####

For more information, please click here

Contacts:
Errol Hunt


@FLEETcentre

Copyright © ARC CENTRE OF EXCELLENCE IN FUTURE LOW-ENERGY ELECTRONICS TECHNOLOGIES

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

THE REVIEW

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Quantum Physics

Energy transmission in quantum field theory requires information September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Spin photonics to move forward with new anapole probe November 4th, 2022

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Quantum Computing

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project