Home > Press > Researchers find safeguards for quantum communications
Abstract:
Army researchers developed a new way to protect and safeguard quantum information, moving quantum networks a step closer to reality.
Quantum information science is a rapidly growing interdisciplinary field exploring new ways of storing, manipulating and communicating information. Researchers want to create powerful computational capabilities using new hardware that operates on quantum physics principles.
For the Army, the new quantum paradigms could potentially lead to transformational capabilities in fast, efficient and secure collecting, exchanging and processing vast amounts of information on dynamic battlefields of the future.
Drs. Dan Jones, Brian Kirby and Michael Brodsky from the U.S. Army Combat Capabilities Development Command's Army Research Laboratory, joined by Gabriele Riccardi and Professor Cristian Antonelli from the University of L'Aquila, studied sources of noise in quantum communication channels.
Noise is a common plague of any communication - anyone who has ever used a radio, a walkie-talkie or a phone experienced noisy reception now and then, Brodsky said. Communication engineers devise intricate schemes to remove the noise and to clean the transmitted signal as much as possible.
According to Brodsky, quantum communications are no different in their susceptibility to noise in communication channels. In fact, even more so than the regular classic communications because the quantum signals are extremely low power.
"To engineer a useful quantum network, we need to understand how far, how fast and how reliably we could send quantum information," Brodsky said. "That requires understanding of the noise in communication channels."
As the team modeled, emulated, characterized and measured different types of noise in quantum channels, the researchers realized that while some quantum noise types are impossible to filter out, others could be removed quite easily.
Surprisingly, it turns out that the bad noise could be converted into good noise by simply adding a cheap extra component to the quantum channel. Having this extra control allows them to tweak the channel and to adjust the properties of the noise that masks the transmitted signal.
The overall focus of the lab's Quantum Networking Group is to experimentally explore the most efficient and secure ways to create, store and process quantum information based on state-of-the-art photonic technologies of the day. The main workhorse of the group is the lab's quantum networking testbed that they have built at its headquarters in Adelphi, Maryland. Researchers use the quantum testbed to test-drive various photonic technological approaches to the fast and robust delivery of quantum information over large distances.
"We approach our research quite uniquely by wearing system engineer hats," Jones said.
The research scope of the group spans developing the architecture and operational principles of quantum networks, as well as understanding and mapping technological limitations to its practical implementation, and, finally, inventing methods and techniques to engineer around these limitations. The current research results belong to the latter two categories.
The next projects in the pipeline focus on demonstrating an intriguing way of completely error-free transmission of quantum information. Further down the line is creating a multi-user quantum network testbed deployed in the field and demonstrating secure secret sharing protocols between two distance metropolitan campuses.
The field of quantum information science is booming worldwide as it potentially leads to unsurpassed capabilities in computation, communication and networking. It offers new paradigms in the ways information is being handled, which would lead to secure secret sharing, distributed network sensing and efficient decision making.
"Our research results are a step towards arming the warfighter of the future with quantum advantages and a good example of how operationalizing science results in transformational overmatch," Brodsky said.
####
About U.S. Army Research Laboratory
CCDC Army Research Laboratory is an element of the U.S. Army Combat Capabilities Development Command. As the Army’s corporate research laboratory, ARL discovers, innovates and transitions science and technology to ensure dominant strategic land power. Through collaboration across the command’s core technical competencies, CCDC leads in the discovery, development and delivery of the technology-based capabilities required to make Soldiers more lethal to win the nation’s wars and come home safely. CCDC is a major subordinate command of the U.S. Army Futures Command.
For more information, please click here
Contacts:
Jenna Brady
301-394-1819
@ArmyResearchLab
Copyright © U.S. Army Research Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Laboratories
Quantum communication
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||