MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A powder method for the high-efficacy measurement of electro-optic coefficients

Schematic illustration of the powder method using powder SHG measurement, IRRS, and Raman spectrum

CREDIT
©Science China Press
Schematic illustration of the powder method using powder SHG measurement, IRRS, and Raman spectrum CREDIT ©Science China Press

Abstract:
Electro-optic crystal shows great promise for extensive applications in laser, optoelectronics, and optical communication, such as high-speed E-O switch, modulator, deflector, laser mode-locking, photoetching, laser radar (LIDAR) and so on. With the prosperous development of Terahertz (THz) spectroscopy technique, E-O crystals are employed in this realm for generation and detection of the THz electromagnetic radiation. Although there are some commercial E-O crystals available in the market, further exploration of novel E-O crystals with superior properties is also in great demand for a variety of current applications. However, the discovering of novel electro-optic crystals is sporadic due to lack of theoretical method for the evaluation of E-O effect and the difficulties of large-sized crystal growth for electro-optic coefficient measurement. Hence, the strategy for exploration of novel E-O crystals should be improved.

A powder method for the high-efficacy measurement of electro-optic coefficients

Beijing, China | Posted on August 21st, 2020

Herein, to address such an issue, inspired by the well-known powder second harmonic generation (SHG) technique reported by Kurtz and Perry (J. Appl. Phys. 39, 3798 (1968). Times Cited: 4176) who open a highway for the exploration new NLO crystals, a high-efficacy evaluation method using accessible powder samples is proposed, in which second harmonic generation effect, infrared reflectance spectrum, and Raman spectrum are introduced to predict the magnitude of electro-optic coefficient. Particularly, the evaluation method is established on the material in powder form or small crystals in micron size, which can be easily obtained at the onset of experiment. Comparing to traditional method for the measurement of E-O coefficients with large-sized crystal which is difficult and time-consuming, the utilization of powders renders the exploring process to be more efficient.

The calculated electro-optic coefficients of numerous reported electro-optic crystals through this approach give universally agreement with the experimental values, evidencing the validity of strategy. Based on this method, CsLiMoO¬4 is screened as a novel electro-optic crystal and high-quality crystal is grown by the Czochralski technique for electro-optic coefficient measurement with half-wave voltage method, whose result is also comparable to the calculated value. Also, on account of the preferable calculated E-O coefficient and the relationship between E-O effect and macroscopic symmetry of crystal, CLM was selected as a potential E-O crystal. Consequently, this powder method for the evaluation of E-O crystals is not only significant for the further understanding of the E-O coefficient, but also have important implications for the high-efficacy screening of promising E-O crystals. The powder evaluation strategy presented in this work will pave a new avenue to explore promising electro-optic crystals efficiently.

####

About Science China Press
The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country's rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

For more information, please click here

Contacts:
Ning Ye
nye@fjirsm.ac.cn

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Optical computing/Photonic computing

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Photonics/Optics/Lasers

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project