MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes

The photoexcited charge carrier is “dressed” by the local lattice distortion, which is revealed by ultrafast conductivity measurements using terahertz transient.
CREDIT
by Zuanming Jin, Yan Peng, Yuqing Fang, Zhijiang Ye, Zhiyuan Fan, Zhilin Liu, Xichang Bao, Heng Gao, Wei Ren, Jing Wu, Guohong Ma, Qianli Chen, Chao Zhang, Alexey V. Balakin, Alexander P. Shkurinov, Yiming Zhu, Songlin Zhuang
The photoexcited charge carrier is “dressed” by the local lattice distortion, which is revealed by ultrafast conductivity measurements using terahertz transient. CREDIT by Zuanming Jin, Yan Peng, Yuqing Fang, Zhijiang Ye, Zhiyuan Fan, Zhilin Liu, Xichang Bao, Heng Gao, Wei Ren, Jing Wu, Guohong Ma, Qianli Chen, Chao Zhang, Alexey V. Balakin, Alexander P. Shkurinov, Yiming Zhu, Songlin Zhuang

Abstract:
Organic-inorganic hybrid metal halide perovskites (MHPs) have attracted tremendous attention for optoelectronic applications. For example, cost-effective solar cells, solid-state lighting, memristors, and ultrafast spin switches in spintronics have recently been designed using MHPs. Despite the promise of the material, many questions remain regarding the nature and mobility of charge carriers in MHPs, which require further understanding.

Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes

Changchun, China | Posted on July 8th, 2022

Researchers from the University of shanghai for science and technology, in collaboration with Qingdao institute of bioenergy and bioprocess technology, Shanghai University, Shanghai institute of technical physics, Shanghai Jiao Tong University, and Lomonosov Moscow State University, now report photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes.

The researchers experimentally identify the photocarriers-optical phonon coupling in CH3NH3PbI3 (MAPbI3) polycrystalline grains, by using optical-pump and terahertz-electromagnetic probe spectroscopy. The photoinduced charge carrier, together with the surrounding lattice distortion over several lattice constants, forms a quasi-particle - a polaron. Using the Drude-Smith-Lorentz model along with the Frӧhlich-type electron-phonon coupling, the researchers determine the effective mass and scattering parameters of photogenerated polaronic carriers. According to the polaron mass enhancement, the polycrystalline nature of the material, and the presence of defects, the large polaron mobility is calculated on the order of ~80 cm2V−1s−1.

Furthermore, the researchers reveal that the formation of large polarons in MAPbI3 protects the charge carriers from scattering with polycrystalline grain boundaries or defects and explains the long lifetime of photoconductivity. The findings provide insights into the polaronic nature of charge carriers in MAPbI3 materials, which is relevant for both fundamental researches and device applications. The results are published in the journal Light: Science & Applications.

####

For more information, please click here

Contacts:
Media Contact

Yaobiao Li
Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS
liyaobiao@ciomp.ac.cn
Office: 86-431-861-76851

Expert Contact

Yan Peng
University of Shanghai for Science and Technology, China
py@usst.edu.cn

Copyright © Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Display technology/LEDs/SS Lighting/OLEDs

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Perovskites

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

Memristors

Artificial neurons go quantum with photonic circuits: Quantum memristor as missing link between artificial intelligence and quantum computing March 25th, 2022

New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov's dog April 30th, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

New insights into memristive devices by combining incipient ferroelectrics and graphene November 27th, 2020

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Spintronics

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Optical computing/Photonic computing

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project