MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Aston University researcher receives £1 million grant to revolutionize miniature optical devices

Professor Misha Sumetsky 

CREDIT
Professor Misha Sumetsky
Professor Misha Sumetsky CREDIT Professor Misha Sumetsky

Abstract:
•Miniature optical devices to be developed for use across manufacturing, IT and agriculture
•Grant has been given by the Engineering and Physical Sciences Research Council
•Devices so small they are measured in picometres – a picometre is one trillionth of a metre.

Aston University researcher receives £1 million grant to revolutionize miniature optical devices

Birmingham, UK | Posted on May 17th, 2024

An Aston University researcher has received more than £1 million to deliver optical devices that are so small they sit on the surface of an optical fibre which can be used in manufacturing, IT and agriculture.

The £1,167,290 grant has been given by the Engineering and Physical Sciences Research Council (EPSRC) for the Picometer Surface Nanoscale Axial Photonics (PicoSNAP) project.

The award will be used to develop Surface Nanoscale Axial Photonics (SNAP) technology which enables the fabrication of miniature photonic devices.

Traditionally, the precision of microscopic devices has been constrained by the size of atoms, with fabrication technologies plateauing at several nanometres – a nanometre being one billionth of a metre.

However, PicoSNAP technology, which was pioneered by Professor Misha Sumetsky of Aston Institute of Photonic Technologies (AIPT), has enabled devices to be scaled down even further so they can be measured in picometres – a picometre is one trillionth of a metre.

The spread of light in SNAP devices differs to regular optical fibres, because light spirals along the perimeter of the fibre and slowly moves along its length, instead of travelling through the core

At the moment SNAP devices are not suitable to go to market, so the project will explore making them ready for practical applications across industries ranging from information technology to precision manufacturing and sensing.

Professor Sumetsky is aiming to develop a reliable manufacturing process to enable production of the devices that is both ultra-accurate and easy to reproduce. If successful, the project will not only bring in a new revolutionary technology but also deliver miniature optical devices with performance not previously possible to achieve, and ready for practical applications.

He said: “The lack of reliable, scalable manufacturing processes with picometre precision remains a major obstacle, and SNAP technology has the potential to address this need with its exceptional precision and performance.

“The goal of this project is the development of the process, which requires insight into the depth of associated physical phenomena, as well as the design and fabrication of new microdevices critical for the future communication, optical signal processing, microwave and sensing technologies, for applications ranging from food industry to fundamental science.

"We envision a high demand for the miniature optical devices we plan to design and fabricate in this project.
"This grant underscores how Aston University's strategy is driving impactful research that addresses real-world challenges."

The project will start in September 2024 and is expected to end in August 2028.

The announcement coincides with UNESCO Day of Light which marks the role light plays in science, culture and art, education and sustainable development. It is held on 16 May every year, the anniversary of the first successful operation of a laser.

####

For more information, please click here

Contacts:
Nicola Jones
Aston University
n.jones6@aston.ac.uk

Copyright © Aston University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Optical computing/Photonic computing

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Photonics/Optics/Lasers

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project