Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers Hope to Unlock Capabilities of Carbon Nanotubes

UT Dallas researchers are using nickel electrodes to explore making electrical contact with a carbon nanotube that is about one-100,000th the width of a human hair.
UT Dallas researchers are using nickel electrodes to explore making electrical contact with a carbon nanotube that is about one-100,000th the width of a human hair.

Abstract:
Results of New Project Could Transform Electronics Industry

Researchers Hope to Unlock Capabilities of Carbon Nanotubes

RICHARDSON, TX | Posted on July 2nd, 2007

In a three-year project that researchers say could revolutionize the electronics industry, engineers at The University of Texas at Dallas are attempting to establish a standard means for tapping the potential of carbon nanotubes.

Ever since they emerged in the early 1990s, nanotubes have promised to enable a whole new wave of technology, including ultra-fast computers that leave today's machines in their dust. But despite advances in manufacturing the tiny graphite cylinders, there's still no standard approach for making electrical contact with them.

"We think carbon nanotubes are ideal candidates to be the building blocks of electronic devices of the future, but to exploit their unique properties you have to be able to connect them to the outside world," said Dr. Moon Kim, a professor of electrical engineering in the Erik Jonsson School of Engineering and Computer Science at UT Dallas and the project's principal investigator. "This will be the first time anyone has determined the extensive metal contacts that need to be established with nanotubes in order to incorporate them into new technology."

Carbon nanotubes are particularly attractive because of their ability to carry electrical current without dissipating much heat, and heat loss is one of the semiconductor industry's chief enemies as silicon chips' physical features become ever smaller.

Nanotubes themselves bring new meaning to the word "small." Their walls can be just one atom thick, forcing researchers to find a way to make an electrical connection between our big clunky world and nanotubes' almost impossibly small one.

The $225,000 grant that's funding the research is one of eight awarded through the new Nano-Bio-Information Technology Symbiosis program, or NBIT, jointly operated by the South Korean Ministry of Science and Technology and the U.S. Air Force Office of Scientific Research. The other U.S. universities receiving grants through the program are Harvard, Caltech, UC Berkeley, UCLA, UC San Diego, the University of Michigan and the University of Cincinnati.

"Not only is this research grant itself important, but it's part of a trend in which we've been successfully competing and collaborating with some of the most prestigious engineering schools in the country," said Dr. Bob Helms, dean of the Jonsson School. "And international collaborations like this are clearly going to be an increasingly important part of the way universities conduct research."

The eight grant winners emerged from a field of more than 50 research proposals submitted to NBIT. Each grant involves collaborative research between U.S. and Korean researchers. The UT Dallas researchers are collaborating with a team from South Korea's Sungkyunkwan University as well as a team from the University of Pittsburgh.

####

About UT Dallas
The University of Texas at Dallas, located at the convergence of Richardson, Plano and Dallas in the heart of the complex of major multinational technology corporations known as the Telecom Corridor, enrolls more than 14,500 students. The school’s freshman class traditionally stands at the forefront of Texas state universities in terms of average SAT scores. The university offers a broad assortment of bachelor’s, master’s and doctoral degree programs. For additional information about UT Dallas, please visit the university’s website at http://www.utdallas.edu .

About the Erik Jonsson School of Engineering and Computer Science

The Erik Jonsson School of Engineering and Computer Science is one of the fastest-growing engineering schools in the United States. With nearly 3,000 students and more than 100 faculty, the school is in the midst of a $300 million initiative that includes the recent completion of a 192,000-square-foot interdisciplinary research building. Areas of research at the school include nanotechnology, human language technology, cybersecurity, telecommunications, bioengineering, and analog circuits and systems. For more information please visit http://www.ecs.utdallas.edu .

For more information, please click here

Contacts:
Jenni Huffenberger
UT Dallas
(972) 883-4431


David Moore
UT Dallas
(972) 883-4183

Copyright © UT Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project