Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > TU Delft launches bionanoscience initiative

Abstract:
A new Bionanoscience department will be created at TU Delft. Bionanoscience concerns research at the meeting point of biology and nanotechnology meet and is as yet largely unexplored. It is expected to become one of the key scientific fields of the 21st century. Over the next decade, TU Delft is set to invest 10 million Euro derived from strategic assets in the new Bionanoscience department, which will form part of the university's successful Kavli Institute of Nanoscience. Last week, the Kavli Foundation also agreed to help support the initiative financially by donating 5 million US$.

TU Delft launches bionanoscience initiative

Netherlands | Posted on February 2nd, 2008

Bionanoscience is the discipline where biology and nanoscience meet. The molecular building blocks of living cells are the focus of bionanoscience. The nanotechnology toolkit enables the precise depiction, study and control of biological molecules. This creates new insights into the fundamental workings of living cells. Furthermore, it is increasingly possible to use the elements of the cell, to the extent that - in a new field called synthetic biology - gene regulation systems, artificial biomolecules and nanoparticles can be developed and applied within the cells. The incorporation of new biological building blocks in cells is highly promising for applications in, for instance, industrial biotechnology and medical science. The Faculty of Applied Sciences' new Bionanoscience department will explore the full spectrum from nanoscience to cell biology to synthetic biology, and as such will naturally and strategically complement the activities of the existing Nanoscience and Biotechnology departments.

Investment in biologically oriented fundamental research and its potential applications is of great strategic importance to TU Delft. This research field is new and has a bright future, and the research into individual cells is at the cutting edge of science and technology. Cell biology is becoming increasingly an engineering discipline: the traditional approach of the biologist is rapidly changing into that of the engineer. This is the motivation behind TU Delft's strategic decision to add bionanoscience to its research portfolio and by doing so enhance its international position and profile.

In addition to TU Delft's EUR 10m contribution, last week the Kavli Foundation also decided that it is willing to donate USD 5m to the bionanoscience initiative.

The new department will work closely with the Nanoscience and Biotechnology departments and will ultimately be the same size as the existing departments in the Faculty of Applied Sciences. To this end, the next few years will see an intensive recruitment drive to attract about 15 top scientists to the department.

Initial steps have already been taken towards creating structural European cooperation: the prestigious European Molecular Biology Laboratory (EMBL) in Heidelberg has indicated its willingness to work together with TU Delft bionanoscientists. EMBL is a major potential partner, in particular in view of the EMBL's expertise in the field of molecular cell biology. Further discussions on cooperation will be held with representatives from EMBL during a Kavli-EMBL workshop in Delft on 12 and 13 February.

####

For more information, please click here

Contacts:
Information TU Delft
T: 0031 (0)15 278 9111


Press information
Karen Collet
T: 0031 (0)15 278 5408


Science information
Frank Nuijens
T: 0031 (0)15 278 4259


Roy Meijer
T: 0031 (0)15 278 1751


Ineke Boneschansker
T: 0031 (0)15 278 8499

Copyright © TU Delft

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project