Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > U.S. Army Awards Research Grant to QuantumSphere For Advanced Methanol Fuel Cell Technology

Abstract:
Under Two-phase program, researchers will improve efficiency, integration and portability of unitized reformed methanol fuel cells for Future Force Warrior effort

U.S. Army Awards Research Grant to QuantumSphere For Advanced Methanol Fuel Cell Technology

SANTA ANA, CA | Posted on October 13th, 2008

QuantumSphere, Inc., a leading developer of advanced catalyst materials, high performance electrodes, and related technologies and systems for portable power and clean-energy applications, today announced that it has been awarded a grant by the United States Army for the development of advanced fuel cell technology that improves efficiency, integration and portability and reduces costs for portable power applications.

Under the Army Small Business Innovation Research Program, QuantumSphere will develop a unitized reformed methanol fuel cell. In the first, nine-month phase of the project, the company will be awarded $120,000 to investigate the synthesis and electrochemistry of bifunctional anodes, high temperature electrolyte membranes and low-cost cathode catalysts for a 5W fuel cell.

If successful, QuantumSphere will move to the second phase of the project, a two-year $750,000 effort to develop a 200W methanol reforming fuel cell in a smaller, lighter form factor to power portable electronic devices in the Army's Future Force Warrior program. The fuel cell is intended to help soldiers operate portable electronic devices without the noise and heat signatures produced by diesel generators.

"Based on our research and our technology background, we feel the goals of the first phase of the project are quite feasible for the development of new materials in highly portable unitized methanol fuel cells," said Subra Iyer, principal technologist for QuantumSphere, Inc. "In the first phase, we will be working on synthesizing some of the high-temperature electrolytes needed for the fuel cell and we have several indications of why we feel this approach will work. In the second phase, we will work on improving the power efficiency and operational issues of this technology that will enable the Army to mount these fuel cells on trucks and provide silent power without the use of diesel generators."

####

About QuantumSphere, Inc.
QuantumSphere, Inc. (QSI) leverages core skills in advanced nano catalysts and related process chemistries to develop, manufacture, and license solutions for a broad range of clean-energy and portable power applications. The Company's proprietary products and process technologies lower costs and enable breakthrough performance in multi-billion dollar growth markets such as batteries, fuel cells, hydrogen generation, emissions reduction, and seawater desalination.

Founded in 2002, QSI’s mission is to reduce dependence on non-renewable energy sources and develop customer driven, near-term, clean technology solutions through continuous innovation and refinement of its highly engineered catalysts, electrode systems, process chemistries, and other advanced technology platforms.

For more information, please click here

Contacts:
QuantumSphere
Michele Kinman

408-218-8815

Copyright © QuantumSphere, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project