Home > Press > Mcgovern Institute funds collaborative neurotechnology projects
Abstract:
The McGovern Institute for Brain Research has announced six new funding awards to develop technologies aimed at accelerating neuroscience research and developing new therapeutic approaches for brain disorders. The new projects are on themes ranging from brain-machine interfaces to new genetic tools and brain imaging methods.
The awards are part of the McGovern Institute Neurotechnology (MINT) program, established in 2006 to promote collaborations between neuroscientists and researchers from other disciplines within and beyond MIT. "Neuroscience has always been driven by new technologies," explained Charles Jennings, the MINT program director. "We want to take advantage of the extraordinary range of technological expertise at MIT to develop new methods that could transform the field."
The MINT awards typically provide up to $100,000 for one year of seed funding to test innovative ideas that traditional funding sources rarely support, and to determine if they are worth pursuing further.
To date, MINT has supported 11 projects, involving faculty members from seven MIT departments as well as a local startup company. "We're on the lookout for new ideas and we'd be delighted to hear from anyone who wants to work with us," Jennings said.
Two of the newly funded projects involve developing electrodes for long-term recordings in the brain. These have potential applications for studies of learning, and eventually for neuroprosthetic devices that could, for example, allow a paralyzed patient to control a robotic arm or a computer through mental activity. One of the new projects will explore the use of carbon nanotubes as a biocompatible material for electrode fabrication. Another will develop biodegradable coatings for thin flexible polymer electrodes to make them easier to insert into the brain.
Neuroscientists often face a challenge in analyzing the large datasets produced by human brain imaging studies. Two MINT projects will apply new computational approaches to fMRI data from visual recognition studies. If successful, these methods could reveal new insights into the brain's functional organization. They could also advance the study of brain disorders, for example by identifying relationships between brain activity, genetics and clinical diagnostic categories.
A fifth project will use optical methods to manipulate cell signaling pathways in vivo, with potential use in identifying targets for drug development. In the sixth project, the collaborators will develop a 3-D laser-based method for dissecting single neurons from brain tissue. The ability to analyze gene expression and other biochemical processes in single cells is especially important in the brain, where cells of many different types are closely intermingled.
Further details of these and previous MINT projects can be found at
web.mit.edu/mcgovern/html/News_and_Publications/2008_seed.shtml.
####
About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.
For more information, please click here
Contacts:
news office
room 11-400
77 massachusetts avenue
cambridge, ma 02139-4307 617-253-2700
Copyright © MIT
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Brain-Computer Interfaces
Taking salt out of the water equation October 7th, 2022
New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov's dog April 30th, 2021
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||