Home > Press > New NIH Funding to Support UAB Total Joint Replacement Research Collaboration
Yogesh Vohra |
Abstract:
Newly announced National Institutes of Health (NIH) funding will expand the reach of ongoing University of Alabama at Birmingham (UAB) research into a unique nanostructured coating to improve the performance and longevity of total joint replacement components. The broadened UAB research opportunity is funded by a four-year, $790,931 National Institutes of Health (NIH) grant through the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS).
UAB's research, titled Bioengineering Research Partnership (BRP) in Total Joint Replacements, will explore next-generation technology to improve the service life of total joint replacements, which UAB researchers believe could dramatically cut the number of recurrent surgical procedures performed each year, said Yogesh Vohra, Ph.D., the BRP's principal investigator and director of the Center for Nanoscale Materials and Biointegration (CNMB) in the UAB School of Natural Sciences and Mathematics.
Vohra said the BRP opportunity will unite his UAB interdisciplinary research team with professionals at Smith and Nephew Inc., an international leader in the development of advanced medical devices. The company is known globally for its OXINIUMTM oxidized zirconium material for joint replacements.
"We have been researching our nanostructured multilayer diamond coating for a number of years inside our UAB facilities but there have been limitations to just how rigorous the testing could be," Vohra said. "The funding to partner with Smith and Nephew expands our research options because it offers us access to the company's resources and talent."
Among the benefits, Vohra said, the BRP allows access to Smith and Nephew's hip and knee simulators, which offer UAB researchers the most realistic testing conditions to date for their coating technology. Working with the multi-million dollar simulators should strongly indicate how well the team's nanostructured multilayer diamond coatings reduce the friction and wear on the metal components of orthopaedic devices, Vohra said. The team also will be able to examine the cellular and tissue responses to the technology and confirm that there is no toxicity effect from any wear debris that is generated.
"This partnership is central to advancing our research toward more reliable and efficient joint replacements," Vohra said. "We are gaining access to state-of-the-art testing equipment while benefitting from Smith and Nephew's experience as the industry leader in advanced bearing-surfaces for joint replacement implants."
The BRP also helps put the UAB coating technology on the fast track for commercialization, as it will foster the private industry relationship necessary to secure investment and production capacity, Vohra said.
The overall clinical impact of the BRP research is to drive down the number of recurrent surgical procedures for joint replacement recipients, who are living longer and pushing the longevity limits of their devices, Vohra said. The American Academy of Orthopaedic Surgeons reports that 15 to 20 percent of annual total joint replacement procedures are recurrent, or revision, surgeries. Vohra said the nanostructured diamond-coated devices should reduce the metal ion release to the surrounding tissues and perform better during long-term implantation in the human body, which could significantly cut the follow-up surgery rate.
The UAB interdisciplinary research team for the project includes Vohra, Susan Bellis, Ph.D., associate professor of physiology and biophysics, Aaron Catledge, Ph.D., research assistant professor of physics, Alan Eberhardt, Ph.D., associate professor of biomedical engineering and David Moore, M.D., Division of Orthopedic Surgery.
####
About University of Alabama at Birmingham (UAB)
Known for its innovative and interdisciplinary approach to education at both the graduate and undergraduate levels, the University of Alabama at Birmingham (UAB) is an internationally renowned research university and academic medical center and the state of Alabama's largest employer. For more information, please visit www.uab.edu.
For more information, please click here
Contacts:
Andrew Hayenga
(205) 934-1676
Copyright © University of Alabama at Birmingham (UAB)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||