Home > Press > UI team improves delivery of cancer-fighting molecules
A mouse tumor treated with an aptamer-siRNA combination (right) shows many dead areas (indicated by the asterisks), whereas an untreated tumor (left) is still largely intact. Delivering siRNA successfully to specific cells has been challenging. UI researchers modified siRNA so that it could be injected into the bloodstream and impact only targeted cells. |
Abstract:
Small interfering RNA (siRNA), a type of genetic material, can block potentially harmful activity in cells, such as tumor cell growth. But delivering siRNA successfully to specific cells without adversely affecting other cells has been challenging.
University of Iowa researchers have modified siRNA so that it can be injected into the bloodstream and impact targeted cells while producing fewer side effects. The findings, which were based on animal models of prostate cancer, also could make it easier to create large amounts of targeted therapeutic siRNAs for treating cancer and other diseases. The study results appeared online Aug. 23 in the journal Nature Biotechnology.
"Our goal was to make siRNA deliverable through the bloodstream and make it more specific to the genes that are over expressed in cancer," said the study's senior author Paloma Giangrande, Ph.D., assistant professor of internal medicine and a member of Holden Comprehensive Cancer Center.
In previous research completed at Duke University, Giangrande's team showed that a compound called an aptamer can be combined with siRNA to target certain genes. When the combined molecule is directly injected into tumors in animal models, it triggers the processes that stop tumor growth. However, directly injecting the combination into tumors in humans is difficult.
In the new study, the researchers trimmed the size of a prostate cancer-specific aptamer and modified the siRNA to increase its activity. Upon injection into the bloodstream, the combination triggered tumor regression without affecting normal tissues.
Making the aptamer-siRNA combination smaller makes it easier to produce large amounts of it synthetically, Giangrande said.
The team also addressed the problem that large amounts of siRNA are needed since most of it gets excreted by the kidneys before having an effect. To keep siRNA in the body longer and thereby use less of it, the team modified it using a process called PEGlyation.
"If you want to use siRNA effectively for clinical use, especially for cancer treatment, you need to deliver it through an injection into the bloodstream, reduce the amount of side effects and be able to improve its cost-effectiveness. Our findings may help make these things possible," Giangrande said.
Although the current study focused on prostate cancer, the findings could apply to other cancers and diseases. Giangrande said the next step is to test the optimized aptamer-siRNA compound in a larger animal model.
Other researchers who contributed significantly to the study included James McNamara, Ph.D., and Anton McCaffrey, Ph.D., both UI assistant professors of internal medicine.
The study was supported by an American Cancer Society Institutional Research grant and a Lymphoma SPORE Development Research Award.
JOURNAL ARTICLE ABSTRACT: www.nature.com/nbt/journal/vaop/ncurrent/full/nbt.1560.html
####
About University of Iowa
The University of Iowa is a major national research university located on a 1,900-acre campus in Iowa City in southeast Iowa, on the Iowa River near the intersection of U.S. Interstate Highways 80 and 380. Iowa is composed of 11 colleges, the largest of which is the College of Liberal Arts and Sciences, enrolling most of Iowa's undergraduates. The Henry B. Tippie College of Business, the Roy J. and Lucille A. Carver College of Medicine, and the Colleges of Education, Engineering, Law, Nursing, Pharmacy, enroll undergraduates, and with the Colleges of Dentistry and Public Health provide graduate education in conjunction with the Graduate College.
For more information, please click here
Contacts:
Becky Soglin
319-356-7127
Copyright © University of Iowa
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||