Home > Press > Traceable nanoparticles may be the next weapon in cancer treatment
Eva Malmström-Jonsson |
Abstract:
Small particles loaded with medicine could be a future weapon for cancer treatment. A recently-published study shows how nanoparticles can be formed to efficiently carry cancer drugs to tumor cells. And because the particles can be seen in MRI images, they are traceable.
Both therapeutic and diagnostic in function, the so-called "theranostic" particles were developed by a team including KTH Professor Eva Malmström-Jonsson, from the School of Chemical Science, as well as researchers at Sweden's Chalmer's University and the Karolinska Institute in Stockholm.
Malmström-Jonsson says that the particles, which the team developed for breast cancer treatment, are biodegradable and non-toxic. Their research was published in the science journal Particle & Particle Systems Characterization.
The study resulted in a method to make nanoparticles spontaneously build themselves up with tailored macromolecules. The formation requires a balance between the particle's hydrophilic (capable of dissolving in water) and hydrophobic (not dissolvable in water) parts. The hydrophobic portion makes it possible to fill the particle with the drug.
A relatively high concentration of the natural isotope 19F (fluorine) makes the particles clearly visible on high-resolution images taken by MRI (magnetic resonance imaging). By following the path of theranostic nanoparticles in the body, it is possible to obtain information about how the drug is taken up by the tumor and whether the treatment is working.
Scientists filled nanoparticles with the chemotherapy drug doxorubicin (known as chemo), which is used today to treat bladder, lung, ovarian and breast cancer, In experiments on cultured cells, they showed that the particles themselves are not harmful but can effectively kill cancer cells after being loaded with the drug.
The next step is to develop the system to target tumors that are difficult to treat with chemotherapy, such as brain tumors, pancreatic cancer, and drug-resistant breast cancer tumors.
"By targeting groups on the surface, or by changing the size or introducing ionic groups on our nanoparticles, one can increase the selective uptake in these tumors," says Andreas Nystrom, an associate professor of nanomedicine at the Swedish Medical Nanoscience Center and Department of Neuroscience, Karolinska Institute.
In the long term, research can result in tailored chemotherapy treatments that seek out tumor cells. This would enable the toxic drug to be delivered more specifically to the tumor, making the treatment more effective while reducing side effects.
"What we want to do is try to give nanoparticles a homing function on the surface so that the drug is as effective as possible and can be transported to the right place," Malmström-Jonsson says.
The study is funded in part by two grants from the Swedish Research Council to Andreas Nystrom and Eva Malmström-Jonsson. Malmström-Jonsson and Nystrom are also active in the company Polymer Factory Sweden AB.
####
About KTH The Royal Institute of Technology
Research at KTH includes not only technology but also natural and social sciences. Our varied research profile does support both general and special expertise, particularly in today´s top-priority subject areas, such as IT and biotechnology.
For more information, please click here
Contacts:
David Callahan
Copyright © AlphaGalileo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||