Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Shape of nanoparticles points the way toward more targeted drugs: A collaboration of scientists at Sanford-Burnham and the University of California, Santa Barbara, finds that rod-shaped particles, rather than spherical particles, appear more effective at adhering to cells

Sanford-Burnham's Erkki Ruoslahti, M.D., Ph.D., is a co-author of the study.
Sanford-Burnham's Erkki Ruoslahti, M.D., Ph.D., is a co-author of the study.

Abstract:
Conventional treatments for diseases such as cancer can carry harmful side effects—and the primary reason is that such treatments are not targeted specifically to the cells of the body where they're needed. What if drugs for cancer, cardiovascular disease, and other diseases can be targeted specifically and only to cells that need the medicine, and leave normal tissues untouched?

Shape of nanoparticles points the way toward more targeted drugs: A collaboration of scientists at Sanford-Burnham and the University of California, Santa Barbara, finds that rod-shaped particles, rather than spherical particles, appear more effective at adhering to cells

La Jolla, CA | Posted on June 10th, 2013

A new study involving Sanford-Burnham Medical Research Institute's Erkki Ruoslahti, M.D., Ph.D., contributing to work by Samir Mitragotri, Ph.D., at the University of California, Santa Barbara, found that the shape of nanoparticles can enhance drug targeting. The study, published in Proceedings of the National Academy of Sciences, found that rod-shaped nanoparticles—or nanorods—as opposed to spherical nanoparticles, appear to adhere more effectively to the surface of endothelial cells that line the inside of blood vessels.

"While nanoparticle shape has been shown to impact cellular uptake, the latest study shows that specific tissues can be targeted by controlling the shape of nanoparticles. Keeping the material, volume, and the targeting antibody the same, a simple change in the shape of the nanoparticle enhances its ability to target specific tissues," said Mitragotri.

"The elongated particles are more effective," added Ruoslahti. "Presumably the reason is that if you have a spherical particle and it has binding sites on it, the curvature of the sphere allows only so many of those binding sites to interact with membrane receptors on the surface of a cell."

In contrast, the elongated nanorods have a larger surface area that is in contact with the surface of the endothelial cells. More of the antibodies that coat the nanorod can therefore bind receptors on the surface of endothelial cells, and that leads to more effective cell adhesion and more effective drug delivery.

Testing targeted nanoparticles

Mitragotri's lab tested the efficacy of rod-shaped nanoparticles in synthesized networks of channels called "synthetic microvascular networks," or SMNs, that mimic conditions inside blood vessels. The nanoparticles were also tested in vivo in animal models, and separately in mathematical models.

The researchers also found that nanorods targeted to lung tissue in mice accumulated at a rate that was two-fold over nanospheres engineered with the same targeting antibody. Also, enhanced targeting of nanorods was seen in endothelial cells in the brain, which has historically been a challenging organ to target with drugs.

Nanoparticles already used in some cancer drugs

Nanoparticles have been studied as vessels to carry drugs through the body. Once they are engineered with antibodies that bind to specific receptors on the surface of targeted cells, these nanoparticles also can, in principle, become highly specific to the disease they are designed to treat.

Ruoslahti, a pioneer in the field of cell adhesion—how cells bind to their surroundings—has developed small chain molecules called peptides that can be used to target drugs to tumors and atherosclerotic plaques.

Promising results

"Greater specific attachment exhibited by rod-shaped particles offers several advantages in the field of drug delivery, particularly in the delivery of drugs such as chemotherapeutics, which are highly toxic and necessitate the use of targeted approaches," the authors wrote in their paper.

The studies demonstrate that nanorods with a high aspect ratio attach more effectively to targeted cells compared with spherical nanoparticles. The findings hold promise for the development of novel targeted therapies with fewer harmful side effects.

###

We acknowledge support from a California Institute of Regenerative Medicine Fellowship, a National Science Foundation (NSF) Graduate Research Fellowship under Grant DGE-1144085, and the Materials Research Science and Engineering Centers Program of the NSF under Award Division of Materials Research 1121053.

The study was co-authored by Poornima Kolhar, UC Santa Barbara; Aaron C. Anselmo, UC Santa Barbara; Vivek Gupta, UC Santa Barbara; Kapil Pant, UC Santa Barbara; Balabhaskar Prabhakarpandian, UC Santa Barbara; Erkki Ruoslahti, Sanford-Burnham and UC Santa Barbara; and Samir Mitragotri, UC Santa Barbara.

####

About Sanford-Burnham Medical Research Institute
Sanford-Burnham Medical Research Institute is dedicated to discovering the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Sanford-Burnham takes a collaborative approach to medical research with major programs in cancer, neurodegeneration, diabetes, and infectious, inflammatory, and childhood diseases. The Institute is recognized for its National Cancer Institute-designated Cancer Center and expertise in drug discovery technologies. Sanford-Burnham is a nonprofit, independent institute that employs 1,200 scientists and staff in San Diego (La Jolla), California, and Orlando (Lake Nona), Florida. For more information, visit us at sanfordburnham.org.

For more information, please click here

Contacts:
Deborah Robison

407-615-0072

Copyright © Sanford-Burnham Medical Research Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project