Home > Press > A faster way to flag bacteria-tainted food — and prevent illness
Food leaving the factory with bacterial contamination could one day become a thing of the past with a new pathogen detection method. Credit: Roibu/iStock/Thinkstock |
Abstract:
The regular appearance of food poisoning in the news, including a recent event that led to the recall of more than 33,000 pounds of chicken, drives home the need for better bacterial detection long before meats and produce make it to the dinner table. On the horizon is a new approach for pathogen screening that is far faster than current commercial methods. Scientists are reporting the technique in the ACS journal Analytical Chemistry.
Sibani Lisa Biswal and colleagues note that Salmonella is one of the pathogens most commonly associated with foodborne illness, which can cause fever, diarrhea and abdominal cramps. An estimated one in six Americans suffer from food poisoning every year, according to the Centers for Disease Control and Prevention. Many end up in the hospital, and about 3,000 people die annually. Conventional methods to detect harmful bacteria in food are reliable and inexpensive, but they can be complicated, time consuming and thus allow contamination to go undetected. Biswal's team set out to develop a faster method to catch unwanted microbes before they can make people sick.
They used an array of tiny "nanomechanical cantilevers," anchored at one end, kind of like little diving boards. The cantilevers have peptides attached to them that bind to Salmonella. When the bacteria bind to the peptides, the cantilever arm bends, creating a signal. The screening system rapidly distinguished Salmonella from other types of bacteria in a sample. One of the peptides was even more specific than an antibody, which is considered the gold standard. That peptide could tell eight different types of Salmonella apart from each other. The researchers stated that the technique could be applied to other common food pathogens.
The authors acknowledge funding from the Welch Foundation, a Hamill Innovations Award Grant and the European Union's Seventh Framework Programme.
####
About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world’s largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.
For more information, please click here
Contacts:
Sibani Lisa Biswal, Ph.D.
Department of Chemical and Biomolecular Engineering
Rice University
Houston, Texas 77005
Phone: 713-348-6055
Fax: 713-348-5478
General Inquiries:
Michael Bernstein
202-872-6042
Science Inquiries:
Katie Cottingham, Ph.D.
301-775-8455
Copyright © American Chemical Society
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Food/Agriculture/Supplements
Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||