Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Better sensors for medical imaging, contraband detection: Magnetic-field detector is 1,000 times more efficient than its predecessors

In this image, laser light enters a synthetic diamond from a facet at its corner and bounces around inside the diamond until its energy is exhausted. This excites "nitrogen vacancies" that can be used to measure magnetic fields.

image: H. Clevenson/MIT Lincoln Laboratory
In this image, laser light enters a synthetic diamond from a facet at its corner and bounces around inside the diamond until its energy is exhausted. This excites "nitrogen vacancies" that can be used to measure magnetic fields.

image: H. Clevenson/MIT Lincoln Laboratory

Abstract:
MIT researchers have developed a new, ultrasensitive magnetic-field detector that is 1,000 times more energy-efficient than its predecessors. It could lead to miniaturized, battery-powered devices for medical and materials imaging, contraband detection, and even geological exploration.

Better sensors for medical imaging, contraband detection: Magnetic-field detector is 1,000 times more efficient than its predecessors

Cambridge, MA | Posted on April 6th, 2015

Magnetic-field detectors, or magnetometers, are already used for all those applications. But existing technologies have drawbacks: Some rely on gas-filled chambers; others work only in narrow frequency bands, limiting their utility.

Synthetic diamonds with nitrogen vacancies (NVs) -- defects that are extremely sensitive to magnetic fields -- have long held promise as the basis for efficient, portable magnetometers. A diamond chip about one-twentieth the size of a thumbnail could contain trillions of nitrogen vacancies, each capable of performing its own magnetic-field measurement.

The problem has been aggregating all those measurements. Probing a nitrogen vacancy requires zapping it with laser light, which it absorbs and re-emits. The intensity of the emitted light carries information about the vacancy's magnetic state.

"In the past, only a small fraction of the pump light was used to excite a small fraction of the NVs," says Dirk Englund, the Jamieson Career Development Assistant Professor in Electrical Engineering and Computer Science and one of the designers of the new device. "We make use of almost all the pump light to measure almost all of the NVs."

The MIT researchers report their new device in the latest issue of Nature Physics. First author on the paper is Hannah Clevenson, a graduate student in electrical engineering who is advised by senior authors Englund and Danielle Braje, a physicist at MIT Lincoln Laboratory. They're joined by Englund's students Matthew Trusheim and Carson Teale (who's also at Lincoln Lab) and by Tim Schröder, a postdoc in MIT's Research Laboratory of Electronics.

Telling absence

A pure diamond is a lattice of carbon atoms, which don't interact with magnetic fields. A nitrogen vacancy is a missing atom in the lattice, adjacent to a nitrogen atom. Electrons in the vacancy do interact with magnetic fields, which is why they're useful for sensing.

When a light particle -- a photon -- strikes an electron in a nitrogen vacancy, it kicks it into a higher energy state. When the electron falls back down into its original energy state, it may release its excess energy as another photon. A magnetic field, however, can flip the electron's magnetic orientation, or spin, increasing the difference between its two energy states. The stronger the field, the more spins it will flip, changing the brightness of the light emitted by the vacancies.

Making accurate measurements with this type of chip requires collecting as many of those photons as possible. In previous experiments, Clevenson says, researchers often excited the nitrogen vacancies by directing laser light at the surface of the chip.

"Only a small fraction of the light is absorbed," she says. "Most of it just goes straight through the diamond. We gain an enormous advantage by adding this prism facet to the corner of the diamond and coupling the laser into the side. All of the light that we put into the diamond can be absorbed and is useful."

Covering the bases

The researchers calculated the angle at which the laser beam should enter the crystal so that it will remain confined, bouncing off the sides -- like a tireless cue ball ricocheting around a pool table -- in a pattern that spans the length and breadth of the crystal before all of its energy is absorbed.

"You can get close to a meter in path length," Englund says. "It's as if you had a meter-long diamond sensor wrapped into a few millimeters." As a consequence, the chip uses the pump laser's energy 1,000 times as efficiently as its predecessors did.

Because of the geometry of the nitrogen vacancies, the re-emitted photons emerge at four distinct angles. A lens at one end of the crystal can collect 20 percent of them and focus them onto a light detector, which is enough to yield a reliable measurement.

####

For more information, please click here

Contacts:
Abby Abazorius

617-253-2709

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

UC Irvine scientists create material that can take the temperature of nanoscale objects: The technology can track small temp changes in electronic devices, biological cells August 16th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project