Home > Press > Magnetic nanoparticles could be key to effective immunotherapy: New method moves promising strategy closer to clinical use
This is a graphic showing a process for producing large numbers of activated, customized T cells using magnetic nanoparticles and a column.
Credit: Karlo Perica/Johns Hopkins Medicine |
Abstract:
In recent years, researchers have hotly pursued immunotherapy, a promising form of treatment that relies on harnessing and training the body's own immune system to better fight cancer and infection. Now, results of a study led by Johns Hopkins investigators suggests that a device composed of a magnetic column paired with custom-made magnetic nanoparticles may hold a key to bringing immunotherapy into widespread and successful clinical use. A summary of the research, conducted in mouse and human cells, appears online July 14 in the journal ACS Nano.
The Johns Hopkins team focused on training and rapidly multiplying immune system white blood cells known as T cells because of their potential as an effective weapon against cancer, according to Jonathan Schneck, M.D., Ph.D., a professor of pathology, medicine and oncology at the Johns Hopkins University School of Medicine's Institute for Cell Engineering. "The challenge has been to train these cells efficiently enough, and get them to divide fast enough, that we could use them as the basis of a therapy for cancer patients. We've taken a big step toward solving that problem," he says.
In a bid to simplify and streamline immune cellular therapies, Schneck, Karlo Perica, a recent M.D./Ph.D. graduate who worked in Schneck's lab, and others worked with artificial white blood cells. These so-called artificial antigen-presenting cells (aAPCs) were pioneered by Schneck's lab and have shown promise in activating laboratory animals' immune systems to attack cancer cells.
To do that, Perica explains, the aAPCs must interact with naive T cells already present in the body, awaiting instructions about which specific invader to target and battle. The aAPCs bind to specialized receptors on the T cells' surfaces and "present" them with distinctive proteins called antigens. This process activates the T cells to ward off a virus, bacteria or tumor, as well as to make more T cells.
In a previous study in mice, Schneck's team found that naive T-cells activated more effectively when multiple aAPCs bound to different receptors on the cells, and then were exposed to a magnetic field. The magnets brought the aAPCs and their receptors closer together, priming the T cells both to battle the target cancer and divide to form more activated cells.
But naive T cells are as rare in the blood as a "needle in a haystack," Perica says. Because the ultimate goal is to harvest a patient's T cells from a blood sample, then train them and expand their numbers before putting them back into the patient, Schneck's research team looked to magnets as a potential way to separate the naive T cells from others in the blood.
The team mixed blood plasma from mice and, separately, humans with magnetic aAPCs bearing antigens from tumors. They then ran the plasma through a magnetic column. The tumor-fighting T cells bound to aAPCs and stuck to the sides of the column, while other cells washed straight through and were discarded. The magnetic field of the column activated the T cells, which were then washed off into a nourishing broth, or culture, to grow and divide. After one week, their numbers had expanded by an estimated 5,000 to 10,000 times. Because numbers of these cells could be expanded quickly enough to be therapeutically useful, the approach could open the door to individualized immunotherapy treatments that rely on a patient's own cells, says Perica.
Schneck says that the use of naive T cells could make the new technique useful for more patients than another immunotherapy now being tested, which relies on other white blood cells called tumor-infiltrating lymphocytes. Those cells are already "trained" to fight cancer, and researchers have shown some success isolating some of the cells from tumors, inducing them to divide, and then transferring them back into patients. But, Schneck says, not all patients are eligible for this therapy, because not all have tumor-infiltrating lymphocytes. By contrast, all people have naive T cells, so patients with cancer could potentially benefit from the new approach whether or not they have tumor-infiltrating lymphocytes.
"The aAPCs and magnetic column together provide the foundation for simplifying and streamlining the process of generating tumor-specific T cells for use in immunotherapy," says Juan Carlos Varela, M.D., Ph.D., a former member of Schneck's laboratory who is now an assistant professor at the Medical University of South Carolina.
The researchers found that the technique also worked with a mixture of aAPCs bearing multiple antigens, which they say could help combat the problem of tumors mutating to evade the body's defenses. "We get multiple shots on the goal," Schneck says.
While the team initially tested the new method only on cancer antigens, Schneck says it could also potentially work for therapies against chronic infectious diseases, such as HIV. He says that if further testing goes well, clinical trials of the technique could begin within a year and a half.
###
Other authors on the study are Joan Glick Bieler, Christian Schutz, Jacqueline Douglass, Andrew Skora, Yen Ling Chiu, Mathias Oelke, Kenneth Kinzler, Shibin Zhou and Bert Vogelstein, all of The Johns Hopkins University.
This work was supported by the National Institute of Allergy and Infectious Diseases (grant numbers AI072677 and AI44129), the National Institute of General Medical Sciences (grant number GM 07309), the National Cancer Institute (grant numbers CA 43460, CA 62924, CA 09243 and CA108835), the Troper Wojcicki Foundation, the Virginia and D.K. Ludwig Fund for Cancer Research, the Sol Goldman Center for Pancreatic Cancer Research, the Commonwealth Foundation, and sponsored research agreements with Miltenyi Biotec and NexImmune.
Under a licensing agreement between NexImmune and the Johns Hopkins University, Jonathan Schneck and Mathias Oelke are entitled to a share of royalty received by the University on sales of products derived from this article. The terms of this arrangement are being managed by the Johns Hopkins University in accordance with its conflict of interest policies.
####
For more information, please click here
Contacts:
Shawna Williams
410-955-8236
Copyright © Johns Hopkins Medicine
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Cancer
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Patents/IP/Tech Transfer/Licensing
Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023
Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021
Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||