Home > Press > Mechanical quanta see the light
![]() |
A stylization of the researcher's nanomechanical device. By way of vibrating back-and-forth, the hole-filled silicon beam converts quantum particles of light into quantum vibrations, and later back into light.
Copyright: Jonas Schmöle, The Aspelmeyer Research group, Faculty of Physics, Vienna Center for Quantum Science and Technology (VCQ), University of Vienna |
Abstract:
Quantum physics is increasingly becoming the scientific basis for a plethora of new "quantum technologies". These new technologies promise to fundamentally change the way we communicate, as well as radically enhance the performance of sensors and of our most powerful computers. One of the open challenges for practical applications is how to make different quantum technologies talk to each other. Presently, in most cases, different quantum devices are incompatible with one another, preventing these emerging technologies from linking, or connecting, to one another. One solution proposed by scientists is to build nanometer-sized mechanical objects that vibrate back-and-forth, just like a tiny vibrating tuning fork. These "nanomechanical devices" could be engineered such that their vibrations are the mediator between otherwise different quantum systems. For example, mechanical devices that convert their mechanical vibrations to light could connect themselves (and other devices) to the world's optical fibre networks, which form the Internet. An outstanding challenge in quantum physics has been building a nanomechanical device that convert quantum-mechanical vibrations to quantum-level light, thus allowing one to connect quantum devices to a future quantum Internet.
Researchers led by Simon Gröblacher at TU Delft and Markus Aspelmeyer at the University of Vienna have now realized just such a nanomechanical device. It converts individual particles of light, known as photons, into quantum-mechanical vibrations, known as phonons, and then back again, as reported today in the journal Nature. Traditionally, the probability to first convert a photon into a phonon has been far too small to be useful. But this joint-team applied a trick: Whenever their nanomechanical device first converted a photon to a phonon, their device created a "signalling" photon. By first looking for this signalling photon, the researchers knew exactly when their nanomechanical device had succeeded in the conversion - it had converted light into quantum-mechanical vibrations of their device. Afterwards, using lasers, the researchers then had their device convert its phonon back into light, and emit a photon. Finally, by carefully counting the signalling photons and the emitted photons, the researchers demonstrated that the entire conversion process happened at the quantum level - a single particle at a time. "Not only is this exactly what is necessary to convert and store quantum bits; what I also find amazing," explains Ralf Riedinger, lead author on the study, "is the implications for fundamental physics. We normally think of mechanical vibrations in terms of waves, like waves travelling across a lake, as water vibrates up and down. But our measurements are clear evidence that mechanical vibrations also behave like particles. They are genuine quantum particles of motion. It's wave-particle duality, but with a nano-sized tuning fork."
The nanomechanical device itself is a tiny silicon beam, only half a micrometer wide, and contains a regular pattern of holes, which traps light and mechanical vibrations in the same spot. This nano-sized beam vibrates back-and-forth billions of times each second. It was fabricated at TU Delft by Prof. Gröblacher's team on a silicon chip and uses infrared wavelengths of light, exactly as industry-standard fibre optic networks, integrated electronic, and emerging photonic circuits.
"We clearly also see the long-term technological potential", says Gröblacher. "Such quantum mechanical vibrations could eventually be used as a 'memory' to temporarily store quantum information inside quantum networks or computers." One grand future vision is to establish a quantum Internet in which quantum bits, instead of classical bits, are distributed and processed all around the world. Just like in today's Internet, light will be used for global exchange of quantum information. How it can be converted to a large variety of different quantum devices that will be available for storage and computation remains a major open question. "Our research indicates that nanomechanical devices are a promising candidate to form this link", reflects Gröblacher.
###
The work at the TU Delft is supported by the Foundation for Fundamental Research on Matter (FOM) Projectruimte program. Work at the University of Vienna is supported by the Vienna Science and Technology Fund WWTF, the European Commission, the European Research Council (ERC) Consolidator Grant Program, the DOC fellowship program of the Austrian Academy of Sciences and the Austrian Science Fund FWF.
####
For more information, please click here
Contacts:
Markus Aspelmeyer
markus.aspelmeyer@univie.ac.at
43-142-777-2531
Copyright © University of Vienna
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Quantum Physics
NEMS
IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018
UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018
Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018
One string to rule them all April 17th, 2018
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Quantum Computing
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Photonics/Optics/Lasers
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Research partnerships
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Quantum nanoscience
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |