Home > Press > A better hologram for fraud protection and wearable optics: Nanotechnology improves holographic capabilities by encoding light polarization
New hologram produces 3-D images across different spectrums of light. CREDIT: Capasso Lab |
Abstract:
Holograms are a ubiquitous part of our lives. They are in our wallets -- protecting credit cards, cash and driver's licenses from fraud -- in grocery store scanners and biomedical devices.
Even though holographic technology has been around for decades, researchers still struggle to make compact holograms more efficient, complex and secure.
Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences have programmed polarization into compact holograms. These holograms use nanostructures that are sensitive to polarization (the direction in which light vibrates) to produce different images depending on the polarization of incident light. This advancement, which works across the spectrum of light, may improvement anti-fraud holograms as well as those used in entertainment displays.
The research is described in Science Advances.
"The novelty in this research is that by using nanotechnology, we've made holograms that are highly efficient, meaning that very little light is lost to create the image," said Federico Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering and senior author of the paper. "By using incident polarized light, you can see far a crisper image and can store and retrieve more images. Polarization adds another dimension to holograms that can be used to protect against counterfeiting and in applications like displays."
Harvard's Office of Technology Development has filed patents on this and related technologies and is actively pursuing commercial opportunities.
Holograms, like digital photographs, capture a field of light around an object and encode it on a chip. However, photographs only record the intensity of light while holograms also capture the phase of light, which is why holograms appear three-dimensional.
"Our holograms work like any other but the image produced depends on the polarization state of the illuminating light, providing an extra degree of freedom in design for versatile applications," said Mohammadreza Khorasaninejad, postdoctoral fellow in the Capasso Lab and first author of the paper.
There are several states of polarization. In linearly polarized light the direction of vibration remains constant while in circularly polarized light it rotates clockwise or counterclockwise. The direction of rotation is the chirality.
The team built silicon nanostructured patterns on a glass substrate, which act as superpixels. Each superpixel responds to a certain polarization state of the incident light. Even more information can be encoded in the hologram by designing and arranging the nanofins to respond differently to the chirality of the polarized incident light.
"Being able to encode chirality can have important applications in information security such as anti-counterfeiting," said Antonio Ambrosio, a research scientist in the Capasso Lab and co-first author. "For example, chiral holograms can be made to display a sequence of certain images only when illuminated with light of specific polarization not known to the forger."
"By using different nanofin designs in the future, one could store and retrieve far more images by employing light with many states of polarization," said Capasso.
Because this system is compact, it has application in portable projectors, 3D movies and wearable optics.
"Modern polarization imaging systems require cascading several optical components such as beam splitters, polarizers and wave plates," said Ambrosio. "Our metasurface can distinguish between incident polarization using a single layer dielectric surface."
"We have also incorporated in some of the holograms a lens function that has allowed us to produce images at large angles," said Khorasaninejad. "This functionality combined with the small footprint and lightweight, has significant potential for wearable optics applications."
###
This work was supported in part by the Air Force Office of Scientific Research Google Inc. and Thorlabs Inc.
####
For more information, please click here
Contacts:
Leah Burrows
617-496-1351
Copyright © Harvard John A. Paulson School of Engineering and Applied Sciences
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Law enforcement/Anti-Counterfeiting/Security/Loss prevention
With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
New chip ramps up AI computing efficiency August 19th, 2022
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||