Home > Press > Building a better bowtie: Bowtie-shaped nanostructures may advance the development of quantum devices WEIZMANN
This is a bowtie-shaped nanoparticle made of silver with a trapped semiconductor quantum dot (indicated by the red arrow). CREDIT: Weizmann Institute of Science |
Abstract:
Bowtie-shaped nanoparticles made of silver may help bring the dream of quantum computing and quantum information processing closer to reality. These nanostructures, created at the Weizmann Institute of Science and described recently in Nature Communications, greatly simplify the experimental conditions for studying quantum phenomena and may one day be developed into crucial components of quantum devices.
The research team led by Prof. Gilad Haran of Weizmann's Chemical Physics Department - postdoctoral fellow Dr. Kotni Santhosh, Dr. Ora Bitton of Chemical Research Support and Prof. Lev Chuntonov of the Technion-Israel Institute of Technology - manufactured two-dimensional bowtie-shaped silver nanoparticles with a minuscule gap of about 20 nanometers (billionths of a meter) in the center. The researchers then dipped the "bowties" in a solution containing quantum dots, tiny semiconductor particles that can absorb and emit light, each measuring six to eight nanometers across. In the course of the dipping, some of the quantum dots became trapped in the bowtie gaps.
Under exposure to light, the trapped dots became "coupled" with the bowties - a scientific term referring to the formation of a mixed state, in which a photon in the bowtie is shared, so to speak, with the quantum dot. The coupling was sufficiently strong to be observed even when the gaps contained a single quantum dot, as opposed to several. The bowtie nanoparticles could thus be prompted to switch from one state to another: from a state without coupling to quantum dots, before exposure to light, to the mixed state characterized by strong coupling, following such exposure.
Therefore, the ability to control the coupling of quantum dots may one day be employed in the manufacture of switches for computing or encryption devices relying on quantum phenomena, that is, those operating at the level of photons and single quantum systems, such as atoms, molecules or quantum dots. Because such phenomena open up possibilities unavailable on the macroscopic scale - for example, performing multiple computations simultaneously - quantum devices are expected to be vastly more powerful than today's electronic computers and encryption systems.
Says Prof. Haran: "We've made a first step toward creating quantum switches using our coupling method. Much research needs to be done before the method can be incorporated into actual devices, but as a matter of principle, our system is relatively easy to generate and, most importantly, can function at room temperature. We are currently working to fabricate even smaller bowtie particles and to render the coupling stronger and reversible."
The Weizmann scientists managed to design their bowtie system thanks to advances in nanotechnology - including electron beam lithography, used to fabricate the bowties and to facilitate the introduction of quantum dots into their gaps - and the advent of computational programs providing data analysis that previously required a massive effort on the part of theoreticians. They also relied on the recently improved understanding of electron oscillations triggered by light in metals, which constitute the physical source of the coupling between the bowtie nanoparticles and the quantum dots: Such oscillations are known to be strongest on the metal surface. In the new bowtie-shaped particles, the electromagnetic field generated by these oscillations is extremely concentrated because it is focused to the central, narrow portion of the bowtie, much as light is concentrated when focused into a narrow beam.
The high concentration ensures tight control over the coupling, and this control, in turn, is essential for potential future quantum applications. None of the systems built in the past to study quantum interactions between light and matter operated on such a small scale or were able to reduce experiments to the level of individual quantum dots, as was done in the Weizmann study.
Prof. Gilad Haran's research is supported by the Ilse Katz Institute for Material Sciences and Magnetic Resonance Research, which he heads; the Nancy and Stephen Grand Research Center for Sensors and Security, which he heads; the Henry Chanoch Krenter Institute for Biomedical Imaging and Genomics; the Carolito Stiftung; the Weston Nanophysics Challenge Fund; Mr. and Mrs. Antonio Villalon; and the Prof. Dov and Ziva Rabinovich Foundation. Prof. Haran is the incumbent of the Hilda Pomeraniec Memorial Professorial Chair.
####
About Weizmann Institute of Science
The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.
For more information, please click here
Contacts:
Yael Edelman
Copyright © Weizmann Institute of Science
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Finding quantum order in chaos May 17th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Quantum Computing
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Quantum Dots/Rods
A new kind of magnetism November 17th, 2023
IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||