Home > Press > Bringing graphene speakers to the mobile market (video)
Abstract:
Graphene has been hailed as a wonder material since it was first made more than a decade ago. It's showing up in an increasing number of products, including coatings, sports equipment and even light bulbs. Now scientists are one step closer to making graphene audio speakers for mobile devices. They report in the journal ACS Applied Materials & Interfaces a simple way to fabricate once-elusive thermoacoustic speakers using the ultra-thin material.
Conventional speakers today rely on many mechanical parts that vibrate to create sound and must be encased in an acoustic cavity -- essentially, in a box. But this approach complicates manufacturing and limits where listeners can put their speakers. Scientists have been pursuing ways around this by turning to a principle conceived of more than a century ago: thermoacoustics, the production of sound by rapidly heating and cooling a material rather than through vibrations. Science has caught up to this concept largely thanks to the development of graphene, which is highly conductive and durable. Some efforts to make graphene speakers have succeeded, but making them en masse would be challenging. Jung-Woo Choi, Byungjin Cho, Sang Ouk Kim and colleagues at Korea Advanced Institute of Science and Technology (KAIST) wanted to come up with a simpler approach.
The researchers developed a two-step (freeze-drying and reduction/doping) method for making a sound-emitting graphene aerogel. An array of 16 of these aerogels comprised a speaker that could operate on 40 Watts of power with a sound quality comparable to that of other graphene-based sound systems. The researchers say their fabrication method is practical and could lend itself to mass production for use in mobile devices and other applications. Because the speaker is thin and doesn't vibrate, it could fit snugly against walls and even curved surfaces.
###
The researchers acknowledge funding from Samsung Research Funding Center for Future Technology and the National Research Foundation of Korea.
####
About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With nearly 157, 000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.
For more information, please click here
Contacts:
Michael Bernstein
202-872-6042
Jung-Woo Choi, Ph.D.
School of Electrical Engineering
Korea Advanced Institute of Science and Technology (KAIST)
Daejeon, Republic of Korea
or
Copyright © American Chemical Society
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
The abstract that accompanies this study is available here:
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||