Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Single ‘solitons’ promising for optical technologies

Purdue researchers have used tiny microrings (top left) to generate single pulses of light called solitons, an advance that could aid efforts to develop advanced optical technologies. Two graphs show the relationship between a phenomenon called Cherenkov radiation and production of single solitons. (Purdue University photo/Chengying Bao)
Purdue researchers have used tiny microrings (top left) to generate single pulses of light called solitons, an advance that could aid efforts to develop advanced optical technologies. Two graphs show the relationship between a phenomenon called Cherenkov radiation and production of single solitons. (Purdue University photo/Chengying Bao)

Abstract:
Spatial mode-interaction induced single soliton generation in microresonators

CHENGYING BAO1,* , Y I XUAN2 DANIEL E.LEAIRD1 STEFAN WABNITZ3 MINGHAO QI1,2 AND ANDREW M.WEINER1,2

1School of Electrical & Computer Engineering, Purdue University

2Birck Nanotechnology Center, Purdue University

3Dipartimento di Ingegneria dell’Informazione, Università di Brescia, and INO-CNR, via Branze 38, 25123 Brescia, Italy *Corresponding author:

Soliton mode-locking in microresonators enables chip-scale coherent optical frequency comb generation. However, it usually leads to multi-soliton combs with a structured spectrum. Instead, the smooth spectrum of a single soliton is favored for applications. Here, we introduce, experimentally and numerically, a passive mechanism for single temporal soliton formation arising from spatial mode-interaction in microresonators. Deterministic single soliton generation is observed for microresonators with strong mode-interaction in experiments and simulations. Further simulations demonstrate that the soliton number is reduced to one in order to lower the nonlinear loss into mode-interaction-induced Cherenkov radiation (CR). Our results give important insights into soliton–CR interaction in cavities. © 2017 Optical Society of America.

Single ‘solitons’ promising for optical technologies

West Lafayette, IN | Posted on October 9th, 2017

Researchers are a step closer to harnessing single pulses of light called solitons, using tiny ring-shaped microresonators, in findings that could aid efforts to develop advanced sensors, high-speed optical communications and research tools.

Being able to harness the solitons using devices small enough to fit on an electronic chip could bring a host of applications, from miniature optical sensors that detect chemicals and biological compounds, to high-precision spectroscopy and optical communications systems that transmit greater volumes of information with better quality.

Researchers have been successful in consistently creating several solitons at a time and single solitons; however, relatively complicated “active tuning” or control is needed. Now, new findings describe a passive method that sidesteps the need of active control for single soliton generation.

“Our work has identified a new way of guiding this system into a single stable soliton,” said Andrew M. Weiner, Purdue University’s Scifres Family Distinguished Professor of Electrical and Computer Engineering.

The approach has shown how to harness a phenomenon called Cherenkov radiation, which is normally a hindrance to developing practical microresonator devices based on solitons.

“The important novelty of this work is that this Cherenkov interaction isn’t just harmful, as it is usually regarded, but actually can in some cases be harnessed to guide you to this nice clean single soliton,” Weiner said. “So, we can use Cherenkov radiation to our advantage.”

The researchers learned that having a moderately weak source of Cherenkov radiation promotes the generation of single solitons.

“We discovered that if the strength is just right it can guide you to getting a single soliton, which is really useful,” Weiner said.

Findings are detailed in research paper published on Aug. 22 in the journal Optica. The paper’s lead author was Purdue postdoctoral research associate Chengying Bao.

Solitons are short and highly stable pulses of light that form within the microring resonator and propagate stably around the ring in a circular fashion.

“Once each time around, a small portion of the soliton’s power couples out of the ring where it is available for use in measurements and applications,” Weiner said.

This happens periodically hundreds of billions of times per second because one trip around the tiny structure takes only a few picoseconds, or trillionths of a second.

Such periodic sequences of optical pulses form a “frequency comb” containing a large number of equally spaced optical frequencies. Frequency combs were demonstrated from “mode-locked” lasers more than 15 years ago, with revolutionary impacts on a wide range of precision measurement technologies and leading to the Nobel Prize in Physics in 2005. However, mode-locked lasers are relatively large and costly, which hinders deployment outside of specialized laboratories, Weiner said.

The microrings used in the Purdue study have a radius of about 100 micrometers (about the thickness of a sheet of paper) and are fabricated with a thin film of silicon nitride, a material compatible with silicon material used for electronics. Consequently, microresonators offer potential for smaller, lower cost optical frequency combs that may be compatible with widespread applications.

When there is more than one soliton within the microring, different spectral lines, or colors of light in the comb, may vary in strength.

“Some will be higher power, but some will be much weaker and not useful for applications,” Weiner said.

However, generating just a single soliton within the microring promotes a smooth comb.

“Being able to guarantee having a smooth envelope by generating single solitons, so that you don’t have some missing most of their power, would be very useful,” he said.

Producing solitons generally requires a precise control and tuning of a “continuous wave pump laser.” Generating only a single soliton requires even more complex tuning, making this feat difficult. However, the new findings suggest it is possible to produce single solitons passively, significantly simplifying the control process by taking advantage of the optical Cherenkov radiation.

“To obtain single soliton operation, the loss of energy to the Cherenkov radiation should be neither too weak nor too strong,” Weiner said. “At present the manufacturing process does not allow sufficient control over the strength of the Cherenkov radiation.”

However, future work may explore ways to more actively control the effect with more sophisticated designs based on coupling between two closely spaced microrings, which can be tuned thermally by heating them.

The single soliton combs could enable transmission of hundreds of independent communications channels in optical fibers, precise multi-frequency optical sensors that detect airborne pollutants for environmental monitoring, and ultra-precise “optical clocks” for time keeping or navigation.

“Environmental monitoring is really starting to happen with larger frequency combs based on lasers, but can we do that with chip-scale sources at lower cost for widespread use?” Weiner said. “We’re not there yet, but the potential is promising.”

The paper was authored by Bao; Yi Xuan, a research assistant professor at Purdue’s Birck Nanotechnology Center; senior research scientist Daniel E. Leaird; Stefan Wabnitz, a researcher from Università di Brescia in Italy; Minghao Qi, a Purdue professor of electrical and computer engineering; and Weiner.

The research was funded by the Defense Advanced Research Projects Agency (DARPA) (W31P40-13-1-0018); Air Force Office of Scientific Research (AFOSR) (FA9550-15-1-0211); National Science Foundation (NSF) (ECCS-1509578); and the Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) (PRIN 2015KEZNYM).

####

For more information, please click here

Contacts:
Writer:
Emil Venere
Purdue University News Service
765-494-4709


Source:
Andrew Weiner
765-494-557

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Andrew Weiner:

Ultrafast Optics and Optical Fiber Communications Laboratory:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Environment

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project