Home > Press > GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture
Umesh Mishra Photo Credit: MATT PERKO |
Abstract:
The proliferation of electronic devices and the growing need to process large amounts of data are among the reasons why the world needs to marshal its energy resources wisely. Add to that the obsolescence of our conventional electrical grid, the emerging Internet of Things and the call to bring essential human requirements — such as light and agriculture — into the 21st century. Underlying those new technologies and energy-saving efforts is gallium nitride (GaN), a compound with unique and valuable electronic properties.
UC Santa Barbara electrical and computer engineering professor Umesh Mishra anticipated the need for higher performance and energy efficiency a long time ago. For decades he has focused his research primarily on the development of GaN materials and devices for electronics while contributing to opto-electronics such as optical data storage, semiconductor lasers and — last but not least — white LEDs pioneered by UCSB professor Shuji Nakamura, which have revolutionized lighting throughout the world. Due in part to Mishra's efforts, GaN has now become the cornerstone for advanced, energy-efficient technologies including power electronics and RF electronics for radar and 4G and 5G communications.
On Monday, Nov. 26, Mishra will deliver the 63rd Annual Faculty Research Lecture, the highest honor bestowed upon UC Santa Barbara professors in recognition of extraordinary scholarly distinction. The event at Corwin Pavilion, which is free and open to the public, begins with a reception at 4 p.m., followed by the lecture at 5:15 p.m.
Titled “Thank God for GaN,” Mishra’s lecture outlines the power of GaN to not only drive innovation but also to modernize existing technology, reduce power consumption and limit energy waste.
“Prof. Nakamura is the founder of the excitement that is GaN because of his Nobel Prize-winning breakthrough of the ubiquitous blue and white LED,” Mishra said. “Along with him and my other colleagues Steve DenBaars, Jim Speck and many others, we hope to create the second wave of excitement based on electronic devices with potential impact as broad as the photonic applications of GaN.”
The Donald W. Whittier Professor of Electrical and Computer Engineering at UC Santa Barbara, Mishra joined the faculty in 1990 after an early career spent both in industry and in academia. He received his bachelor of technology degree from the Indian Institute of Technology in Kanpur, India, his master’s degree from Lehigh University in Bethlehem, Penn., and his Ph.D. from Cornell University.
A highly cited researcher, Mishra has put his considerable talent into the industry of GaN as well. In 1996, he co-founded Nitres (later acquired by Cree, Inc.), the first startup in the world to commercialize radio frequency GaN transistors and LEDs. In 2007 he co-founded and continues to lead Transphorm, which has commercialized GaN-on-silicon transistors for power conversion.
Known for his engaging teaching style, Mishra has supervised more than 65 Ph.D. theses — more than 40 of them in the field of GaN materials and devices. Many of his students have won awards for their presentations at prestigious conferences and have gone on to become leaders in the field in their own right.
Mishra has received numerous honors, including the Institute of Electrical and Electronics Engineers’ Microwave Theory and Techniques Distinguished Educator Award and its David Sarnoff Award. He also has been awarded the International Symposium on Compound Semiconductors’ (ISCS) Heinrich Welker Medal, as well as the ISCS Quantum Device Award for his contributions to the development and commercialization of GaN electronics. He is an IEEE Fellow, an International Fellow of the Japanese Society of Applied Physics, a fellow of the National Academy of Inventors and a member of the National Academy of Engineering.
####
For more information, please click here
Contacts:
Sonia Fernandez
(805) 893-4765
Shelly Leachman
(805) 893-8726
Copyright © University of California, Santa Barbara
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Internet-of-Things
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Display technology/LEDs/SS Lighting/OLEDs
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Memory Technology
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Optical computing/Photonic computing
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Food/Agriculture/Supplements
Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023
Events/Classes
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||