Home > Press > Tissue-digging nanodrills do just enough damage: Scientists advance case for use of molecular machines to treat skin diseases
Daphnia, a species of plankton, were exposed to molecular machines developed at Rice University in lab experiments to determine the effects of the microscopic drills on tissue. At left is a healthy plankton with all of its appendages. At right, the daphnia has only two of its appendages after 10 minutes of exposure to light-activated nanomachines. The drills are intended to target drug-resistant bacteria, cancer and other disease-causing cells and destroy them without damaging adjacent healthy cells. (Credit: Alison Buck/Biola University) |
Abstract:
Molecule-sized drills do the damage they are designed to do. That’s bad news for disease.
Scientists at Rice University, Biola University and the Texas A&M Health Science Center have further validation that their molecular motors, light-activated rotors that spin up to 3 million times per second, can target diseased cells and kill them in minutes.
The team led by Biola molecular biochemist Richard Gunasekera and Rice chemist James Tour showed their motors are highly effective at destroying cells in three multicellular test organisms: worms, plankton and mice.
A study in the American Chemical Society journal ACS Applied Materials & Interfaces shows the motors caused various degrees of damage to tissues in all three species. The journal plans to designate the paper as an open-access ACS Editors’ Choice.
The project’s original goal was to target drug-resistant bacteria, cancer and other disease-causing cells and destroy them without damaging adjacent healthy cells. Tour has argued cells and bacteria have no possible defense against a nanomechanical drilling force strong enough to punch through their walls.
“Now it has been taken to a whole new level,” Tour said. “The work here shows that whole organisms, such as small worms and water fleas, can be killed by nanomachines that drill into them. This is not just single-cell death, but whole organism, with cell death in the millions.
“They can also be used to drill into skin, thereby suggesting utility in the treatment of things like pre-melanoma,” he said.
The researchers saw different effects in each of the three models. In the worm, C. elegans, the fast motors caused rapid depigmentation as the motors first caused nanomechanical disruption of cells and tissues. In the plankton, Daphnia, the motors first dismembered exterior limbs. In both cases, after a few days, most or all of the organisms died.
For mouse models, researchers applied the nanomachines in a topical solution to the skin. Activating the fast motors caused lesions and ulcerations, demonstrating their ability to function in larger animals.
“That mouse skin changes due to the ‘drilling’ by the nanomachines might be the one of most interesting aspects of the study to scientists,” said Gunasekera, an adjunct faculty member and former visiting scientist at Rice and currently associate dean and a professor of biochemistry at Biola. He is co-lead author of the paper with Thushara Galbadage, an associate professor of public health at Biola.
“It could mean direct topical treatment to skin conditions such as melanomas, eczema and other skin diseases,” Gunasekera said. “This paper is significant because it’s the first testing of nanomachines where we’ve proven its effectiveness in vivo. All other studies done so far were done in vitro.”
He suggested the motors could be used for therapeutic parasite control as well as local treatment of such diseases as skin cancer.
Co-authors of the paper are Ciceron Ayala-Orozco, an academic visitor at Rice and postdoctoral fellow at The University of Texas MD Anderson Cancer Center; Rice postdoctoral researchers Dongdong Liu and Victor García-López; Rice alumnus Brian Troutman, a senior project engineer at Lockheed Martin; Rice academic visitor Josiah Tour; Robert Pal, a Royal Society University Research Fellow at Durham (U.K.) University; Sunil Krishnan, a professor of radiation oncology at MD Anderson, and Jeffrey Cirillo, a Regents’ Professor and director of Texas A&M’s Center for Airborne Pathogen Research and Tuberculosis Imaging. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of computer science and of materials science and nanoengineering at Rice.
The Discovery Institute, the Welch Foundation and the National Institutes of Health supported the research.
####
About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 4 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.
Follow Rice News and Media Relations via Twitter @RiceUNews.
For more information, please click here
Contacts:
Jeff Falk
713-348-6775
Mike Williams
713-348-6728
Copyright © Rice University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Motorized molecules drill through cells:
Wiess School of Natural Sciences:
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||