Home > Press > Multi-functionalization of graphene for molecular targeted cancer therapy
Figure 1. Schematic illustration of multi-functional graphene. CREDIT JAIST, CNRS |
Abstract:
"Three" kinds of regalia such as crown, orb, and sward are often necessary to be a high king for conquering the world. For fighting off cancerous diseases, what do we need? This "triple" chemical modified nanomaterial might be save the patient.
Cancer is a leading cause of death worldwide. Under this situation, a successful tumor selective drug targeting and minimized toxicity of cancer drug are urgently necessary.
Scientists from Japan Advanced Institute of Science and Technology (JAIST) and Centre national de la recherche scientifique (CNRS), and their colleagues have developed a type of nanomedicine based on multi-functional graphene that allows for targeted cancer treatment at molecular level.
Single molecular sheet graphene is a promising carbon nanomaterial for various fundamental and practical applications in the next decade because of its excellent physico-chemical features. Graphene has been also known to have a good biocompatibility and biodegradability, thus leading to explore this nanocarbon as drug delivery carrier. However, it is not easy to modify a lot of individual functional molecules onto a graphene nano-sheet at the same time for its biomedical applications.
Developed by Prof. Eijiro Miyako from JAIST (Nomi, Japan), Dr. Alberto Bianco from CNRS (Strasbourg, France), and their international teams, the multi-functional graphene as a drug delivery carrier are successfully synthesized with "three" type of molecules such as near-infrared (NIR) fluorescent probe (indocyanine green; ICG), tumor targeting molecule (Folic acid: FA), and anticancer drug (doxorubicin; Dox) by a covalent chemical modification technique (Figure 1). ICG (green color part in the picture) was chosen as fluorophore to follow the uptake and to track the material inside the cells. FA (blue) was covalently bound through a polyethylene glycol (pink) linked to graphene, to specifically target the cancer cells, and Dox (red) was used as anticancer drug.
Aside from testing the therapeutic abilities to eliminate cancer cells in a culture dish, the team found that the unique properties of this multi-functional graphene showed an enhanced anticancer activity with excellent cancer targeting effect. This would open the doors to future biomedical applications of this type of material. The team plans to continue exploring multi-functional graphene towards the cancer therapy using murine animal model.
###
The work was supported by the Japan Society for the Promotion of Science KAKENHI Grant-in-Aid for Scientific Research (A) and (B), the KAKENHI Fund for the Promotion of Joint International Research, the Agence Nationale de la Recherche (ANR), the Graphene Flagship, the Spanish MINECO, the Generalitat Valenciana.
####
For more information, please click here
Contacts:
Eijiro Miyako
81-761-511-540
Copyright © Japan Advanced Institute of Science and Technology (JAIST)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Cancer
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||