Home > Press > Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions
Rice University chemist Matt Jones is one of 18 American scientists to receive the Packard Fellowship for Science and Engineering this year. Jones will use Rice's advanced transmission electron microscope to study the dynamics of chemical processes at the nanoscale. (Credit: Jeff Fitlow/Rice University) |
Abstract:
It's one thing to start a chemical reaction and get a result, but it's quite another thing to watch it in progress. Rice University chemist Matt Jones wants to see it happen.
Time-lapsed video shows a 10-nanometer inorganic particle being etched away in a liquid cell, as captured by a transmission electron microscope at the University of California, Berkeley. Rice University chemist Matt Jones filmed the process while working as a postdoctoral researcher there, and has now received a Packard Fellowship to study using the technique to view nanoscale chemical reactions on surfaces. (Credit: Matt Jones/Science Magazine)
Jones has won a prestigious Packard Fellowship for Science and Engineering, a five-year, $875,000 grant to pursue research that stretches his lab's abilities. The grant is awarded to only 18 early career faculty members a year and is intended to promote new frontiers in their research.
Jones will use the grant to develop techniques in the relatively new field of liquid cell transmission electron microscopy (TEM) to view chemical processes in real time at the atomic scale. The field was the subject of a recent review paper by Jones in ACS Energy Letters.
"TEM is a tried-and-true characterization tool that has been developed for decades and is extremely useful for looking at all kind of things," said Jones, the Norman and Gene Hackerman Assistant Professor of Chemistry. "It has very high resolution. We can see individual columns of atoms in these images.
"But in order to collect them, the instrument is under high vacuum," he said. "If you put a liquid in a vacuum, it evaporates."
Jones learned during a postdoctoral stint at the University of California, Berkeley, to use hermetically sealed cells that trap minute amounts of liquid in a chamber with micron-sized windows that allow the electron beam to pass through.
"This now lets us use all the technology that's been developed for TEM and leverage it to watch dynamic processes over time in a liquid," he said.
Better yet, the cells allow liquid to flow into the chamber on demand so reactions can be captured from the start. He said the cells can also be heated or incorporate electrodes for the study of batteries or other electrochemical processes.
Jones' pitch to the Packard Foundation was to focus the technique on surface reactions, a critical factor in catalysis and other industrial processes. The lab's initial goals are to capture video of nanocrystal synthesis, protein biofouling of medical devices and catalysis itself.
"I think there's interesting fundamental scientific questions to pursue in each of those categories, but all three of them have potentially important application ramifications as well," he said.
The properties of nanocrystals made by the Jones lab are determined by their sizes and shapes, so seeing them form will be a revelation, he said.
"These particles are going to be important for technological applications," Jones said. "There are now televisions that have quantum dots, so nanocrystals are reaching the stage of commercialization. But fundamentally, we have very little understanding of how they grow."
The biofouling study will view what happens to medical and other devices "when you put them in a solution with a bunch of proteins, like blood or plasma," Jones said.
"Whatever the solution, all kinds of things start to stick to the surface and proteins can denature," he said. "That can elicit an immune response if it's in your body. If we can watch the process happen, there will be no indirect interpretation of the data. You'll see exactly what it does."
Jones called his third area of interest, catalysis, "the quintessential surface science process."
"There's been a lot of good, fundamental work in this field, but watching reactions happen to see how individual molecules or particles behave is a piece of information that is unavailable to science at the moment," he said. "Once we understand how a catalyst works, we can potentially make it more efficient or find materials that accomplish the same reaction that are more abundant and cheaper, use less energy or emit less carbon dioxide."
Jones said part of the draw to Rice was the suite of advanced electron microscopes installed in 2015 at Brockman Hall. "We have one of the most powerful transmission electron microscopes in North America, and it's outfitted with spectroscopy equipment," he said. "Connecting liquid-cell TEM to spectroscopy hasn't really been done yet, but it's in our future. It will be neat if we can get spectroscopic information from dynamic processes."
He expects all the new skills to boost his lab's primary mission: the bottom-up assembly of nanoparticles into useful inorganic materials, including adaptive materials with unique optical and mechanical properties for metamaterials, energy storage and biological applications.
"We had planned to do all this work regardless, but getting the Packard is the cherry on top," he said.
####
About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,970 undergraduates and 2,934 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 2 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to http://tinyurl.com/RiceUniversityoverview .
Follow Rice News and Media Relations via Twitter @RiceUNews.
For more information, please click here
Contacts:
David Ruth
713-348-6327
Mike Williams
713-348-6728
Copyright © Rice University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Wiess School of Natural Sciences:
Related News Press |
Chemistry
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||